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ABSTRACT 
 

   Gulf war illness (GWI) is a chronic multisymptomatic disorder affecting about 

30% of veterans of the 1990-1991 Persian Gulf war. Affected veterans complain of chronic 

symptoms which begun during or shortly after the war and persist 30 years later. This 

dissertation is a report of three studies which use a murine model to investigate the 

microbiome as a therapeutic target in GWI.  Mice were exposed to pesticides and the 

prophylactic drug pyridostigmine bromide (PB) and studied these chemical’s impact on the 

microbiome in both an acute and persistence model of GWI. 

The first study looks at the effect of altered microbiome on metabolism and 

proposes short chain fatty acids as a therapy for GWI. Results show that mice exposed to 

GWI showed toll like receptor activation, inflammation and metabolic reprogramming in 

the liver. These symptoms were alleviated with sodium butyrate, a short chain fatty acid. 

The second study looked at the effect of altered microbiome on the enteric nervous system 

and proposes the use of SsnB a TLR4 antagonist in combination with sodium butyrate as 

a possible therapy. Results show that mice which were treated with GW chemicals had 

reactive enteric glia which produced reactive oxygen species and proinflammatory 

cytokines, thereby modulating the expression of tight junction proteins in the intestine. 

Further, administration of SsnB and butyrate led improved EGC states and therefore 

improving tight junction protein integrity. The third study looks at the altered microbiome 
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in the persistence of GWI neurological symptoms. Results show that mice exposed to GW 

chemicals presented with decreased relative abundance of Akkermansia muciniphila, a 

probiotic bacterium associated with good health, and this correlated with HMGB1 levels, 

neuroinflammation and neurotrophins level such as BDNF which are key players in 

maintaining neurological health
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CHAPTER 1 

 

INTRODUCTION 
 

            Gulf war illness is a chronic multisymptomatic disorder affecting about 

30% of veterans of the 1990-1991 Persian Gulf war (1)(2) (3). Affected veterans complain 

of acute and chronic symptoms which begun during or shortly after the war and still persist 

30 years later (1)(3)(2)(4). These symptoms include fatigue, muscle pain, cognitive 

problems, insomnia, rushes, gastrointestinal problems etc. Gulf war illness has particularly 

been a challenge because although veterans complain of the above symptom, there is no 

significant clinical pathology that can be medically detected (4). For many years, this 

challenge resulted in the disorder being dismissed as post-traumatic stress disorder (PTSD) 

or other psychological problems that the veterans may have developed due to the war 

(1)(2). However, in the last 15 years, epidemiological studies have established a compelling 

link between GWI with environmental and chemical exposures that occurred shortly before 

(in preparation for the war) or during the war. These exposures include vaccines, desert 

storm dust, depleted uranium, combustion products from oil wells, pesticides and 

prophylactic drugs(5).  

 Currently, research is focused on understanding the mechanisms that drive this 

disorder by studying veteran cohorts, using animal models and invitro work. Other studies 
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are also aiming to determine possible therapies to relieve affected veterans of these 

discomforts (6).  

To date, our lab research on GWI focusses on the role of the microbiome in GWI. 

The microbiome consists of all the microorganisms in the gastrointestinal tract (7). The gut 

is populated by billions of microorganisms which exist in symbiotic and commensal 

relations with their host. These can be bacteria, viruses, fungi, protozoans etc. These 

microorganism populations affect the health and influence disease states of their host 

(8)(9)(10)(11). Although the mechanisms by which they influence health are not fully 

understood, it is now known that these microorganisms act through. Enabling digestion of 

complex foods eg xyloglucans to release nutrients eg short chain fatty acids (12) anti-

inflammatory substances, manufacture of vitamins (13) etc. They also produce and 

consume signaling molecules which can be detected by the brain eg neurotransmitters such 

as gama amino butyric acid (GABA), dopamine, serotonin etc which are important in 

neurological health (14). For example, the study by Vogt et al found elevated levels of the 

gut microbiota metabolite trimethylamine N oxide in cerebral spinal fluid of AD patients 

(15), which is a known risk factor for the disease.  Another study found that key metabolites 

had been altered (amino acids and fatty acids) significantly in IBS patients stools and this 

correlated with the observed dysbiosis (16). With this critical role of the microbiome in 

health and chronic disease, we investigated its role in driving and influencing GWI 

pathology. 

 This dissertation is a report of three studies which use a murine model to 

investigate the microbiome as a therapeutic target in GWI.  We exposed mice to pesticides 

and the prophylactic drug pyridostigmine bromide (PB) and studied these chemical’s 
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impact on the microbiome. Although animal models of GWI still remain imperfect, this 

model is generally accepted because it is known that GW veterans were exposed to a wide 

range of pesticides eg permethrin, deet etc. These chemicals were applied to the veteran’s 

uniforms and tents and skin to protect them from insects while in the war.  

Permethrin, which we use in our study is a pyrethroid which acts on the central 

nervous system as a neurotoxin by disrupting sodium channels in neurons of insects 

resulting in paralysis. In small quantities, it is not significantly toxic to humans and larger 

animals, however, to insects it is lethal since they are unable to metabolize this chemical 

quickly. We also used a pyridostigmine bromide (PB) an investigational product (at that 

time) which was supplied as prophylactic drug to GW warriors to protect them from the 

harmful effects of nerve agents eg sarin gas. About 250, 000 personnel reported having 

used the drug in the GW at a dosage of 30 mg per 8 hours. However, there was some 

variation because the drug was self-administered, and some people could have consumed 

more or less than required. It is a reversible inhibitor of acetylcholinesterase (AchE), an 

enzyme which is targeted by nerve agents which irreversibly bind AchE (17).  

Generally, we hypothesized that exposure to GW chemicals led to altered 

microbiome alterations which fuels inflammation in the gut and other organs. This is 

through the release of Damage associated molecular patterns (DAMPs) and pathogen 

associated molecular patterns (PAMPs) which escape the gastrointestinal tract and leak out 

into the circulation through compromised gut barrier integrity. 

The first study looks at the effect of an altered microbiome on metabolism and also 

proposes short chain fatty acids as a therapy for GWI. We found that mice exposed to GWI 
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showed toll like receptor activation, inflammation and metabolic reprogramming in the 

liver. These symptoms were alleviated with sodium butyrate which acted through its 

receptor (18). 

 The second study looked at the effect of the altered microbiome on the enteric 

nervous system (ENS) and proposes the use of sparstolonin B (SsnB) a TLR4 antagonist 

in combination with sodium butyrate as a possible therapy. We found that mice which were 

treated with GW chemicals had reactive enteric glia which produced reactive oxygen 

species (ROS) and proinflammatory cytokines, thereby modulating the expression of tight 

junction proteins and aquaporins in the small intestine. In our previous studies we had 

found that poor gut integrity was an important symptom in GWI and is the likely portal for 

immunostimulatory particles to reach other distant organ beyond the gut. We also found 

that administration of SsnB and butyrate led improved EGC states and therefore improving 

tight junction protein integrity (19). 

The third study looks at the altered microbiome in the persistence of GWI 

symptoms. Using a persistence model of GWI, we found that mice exposed to GW 

chemicals presented with decreased relative abundance of Akkermansia muciniphila, a 

probiotic bacterium associated with good health, and this correlated with HMGB1 levels, 

neuroinflammation and neurotrophins level such as BDNF which are key players in 

maintaining neurological health. Figure 1 is a graphical summary of these three studies. 
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Figure 1.1. Summary of all three projects discussed. Exposure to GW chemicals results 
in microbiome alterations (dysbiosis) with increased DAMPs and PAMPS, inflammation 
and a leaky gut (leaky gut is shown by dotted red line). DAMPs eg HMGB1 and PAMPs 
eg LPS cross into the blood stream reaching distant organs such as the liver and the brain. 
This drives inflammation and associated symptoms such as carbohydrate and fat metabolic 
reprograming in liver, decrease in neurotrophin levels e,g brain derived neurotrophic factor 
(BDNF) in the brain. Brown boxes represent organs/systems on which research was 
focused, blue boxes list pathological markers and findings of studies white boxes represent 
conclusions and our thoughts for future studies. Abbreviations used GW (Gulf war), PB 

(pyridostigmine bromide), DAMPs (Damage associated molecular patterns) PAMPs 

(Pathogen associated molecular patterns), LPS (lipopolysaccharides), HMGB1 (High 

mobility group box 1 protein), ROS (reactive oxygen species), GI (gastrointestinal), CNS 

(central nervous system), BBB (blood brain barrier), BDNF (Brain derived neurotrophic 

factor) 
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CHAPTER 2 
 

INCREASED BUTYRATE PRIMING IN THE GUT STALLS MICROBIOME 

ASSOCIATED-GASTROINTESTINAL INFLAMMATION AND HEPATIC 

METABOLIC REPROGRAMMING IN A MOUSE MODEL OF GULF WAR 

ILLNESS1 

 

 

 

                                                           

1
 Seth, R. K#., Kimono, D#., Alhasson, F., Sarkar, S., Albadrani, M., Lasley, S. K., 

Horner, R., Janulewicz, P., Nagarkatti, M., Nagarkatti, P., Sullivan, K., & Chatterjee, S. 

(2018). Increased butyrate priming in the gut stalls microbiome associated 

gastrointestinal inflammation and hepatic metabolic reprogramming in a mouse model of 

Gulf War Illness. Toxicology and applied pharmacology, 350, 64–77. 

https://doi.org/10.1016/j.taap.2018.05.006  # authors contributed equally 

Reprinted here with permission of publisher 
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ABSTRACT 

 

Most of the associated pathologies in Gulf War Illness (GWI) have been ascribed 

to chemical and pharmaceutical exposures during the war. Since an increased number of 

veterans complain of gastrointestinal (GI), neuroinflammatory and metabolic 

complications as they age and there are limited options for a cure, the present study was 

focused to assess the role of butyrate, a short chain fatty acid for attenuating GWI-

associated GI and metabolic complications. Results in a GWI-mouse model of permethrin 

and pyridostigmine bromide (PB) exposure showed that oral butyrate restored gut 

homeostasis and increased GPR109A receptor copies in the small intestine (SI). Claudin-

2, a protein shown to be upregulated in conditions of leaky gut was significantly decreased 

following butyrate administration. Butyrate decreased TLR4 and TLR5 expressions in the 

liver concomitant to a decrease in TLR4 activation. GW-chemical exposure showed no 

clinical signs of liver disease but a significant alteration of metabolic markers such as 

SREBP1c, PPAR-α, and PFK was evident. Liver markers for lipogenesis and carbohydrate 

metabolism that were significantly upregulated following GW chemical exposure were 

attenuated by butyrate priming in vivo and in human primary hepatocytes. Further, Glucose 

transporter Glut-4 that was shown to be elevated following liver complications were 

significantly decreased in these mice after butyrate administration. Finally, use of TLR4 

KO mice completely attenuated the liver metabolic changes suggesting the central role of 

these receptors in the GWI pathology. In conclusion, we report a butyrate specific 

mechanistic approach to identify and treat increased metabolic abnormalities in GWI 

veterans with systemic inflammation, chronic fatigue, GI disturbances, metabolic 

complications and weight gain. 
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2.1. INTRODUCTION 

 

Gulf War Illness (GWI) has been characterized as a chronic multi-symptom illness 

with pathology that includes neuronal inflammation leading to cognitive deficiencies, 

chronic fatigue, joint and muscle pain and gastrointestinal complications (3)(20). GWI 

research has identified toxicant chemical exposures in the war theater including sarin nerve 

gas, pyridostigmine bromide (PB) anti-nerve gas pills, insecticides and insect repellents, to 

be prime reasons for most symptoms reported by the veterans (3). A study of military 

pesticide applicators from the GW recently reported increased cognitive decrements in 

attention, memory and information processing speed in veterans with combined exposures 

to PB, pesticides and insect repellents (21). Animal models of GWI have also shown 

chronic impairment in learning and memory, fatigue and gastrointestinal dysfunction when 

exposed to GW-relevant chemicals including PB, pesticides and the insect repellent 

permethrin (22)(23). GWI has emerged as a primarily neuroimmune disorder with greater 

inflammatory effects noted when GW-relevant toxicants were combined with 

corticosterone in animal models to mimic the physical and mental stressors of war 

deployment  (24). However the basis of gastrointestinal complications and parallel 

networks for neuronal complications have remained largely elusive (25) (26)(25). Though 

the larger epidemiological studies list GI complications as a major health problem in only 

a subset of GW veterans, there are hardly any reports that show hepatic metabolic 

disturbances as a widely reported symptom (3);(27). This may be due to the silent nature 

of the presentation of these symptoms and unknown links to a wider systemic complication 

in GW veterans following sedentary lifestyles/physical disabilities/diet/aging over a longer 

period of time (28). However, with increased incidences of obesity and persistence of 
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symptoms in GW-veterans and the US population in general, the causes, outcomes, and 

extent of metabolic disturbances can no longer be ignored. The long-ranging implications 

of such silent changes in the GI tract and the liver following chemical exposure form the 

basis of the present study. 

We have shown recently the unambiguous role of the gut microbiome in causing 

neuronal inflammation largely due to gut leaching and systemic endotoxemia (29). The 

altered gut bacterial signature obtained following Gulf War chemical exposure caused a 

TLR4-linked inflammatory surge in the GI tract and could be traced in the frontal cortex 

(29). The observations reported paved the way for newer investigations into wider systemic 

inflammatory complications in extraneuronal organs that might not have a clear phenotype 

yet may be a basis for multisymptomatic illness as described in GWI. 

 GWI is also characterized by the presence of chronic fatigue. Most classifications 

in the past have listed chronic fatigue as one of the most widely reported symptom burdens 

in GW veterans (20)(30) . Interestingly, changes in the microbiome of affected patients 

with chronic fatigue syndrome/fibromyalgia have been strongly associated with the causes 

of this illness (31)(32). Chronic fatigue is also strongly linked to widescale changes both 

in the gut bacteria and the systemic metabolism with the latter believed to have roots in the 

liver though skeletal muscles also play a major role (33). Persistent alteration of liver 

metabolism following changes in gut microbiome and its subsequent effects on systemic 

metabolism may affect the development of chronic fatigue via the altered availability of 

NADPH, ATP, and cofactors for various biochemical pathways (33). 
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Most chronic liver diseases like fatty liver disease and biliary fibrosis are silent in 

a presentation at the clinic and remain asymptomatic until it reaches an irreversible stage. 

Nonalcoholic fatty liver disease or cholestatic liver disease have chronic fatigue as one of 

the symptoms (34). The fatigue associated with these silent liver complications have been 

assigned to lipotoxicity, insulin and leptin resistance, endocrinopathies and metabolic 

syndrome (35). Interestingly, we have shown that environmental chemicals alter liver 

metabolism by increasing glucose transporters in the liver fibroblasts, elevating 

expressions of PPAR-α, PFK and decreasing PPAR-γ levels with a concomitant rise in 

leptin (36). These changes in the liver have been associated with an altered microbiome 

following consumption of a diet rich in high fat and low fiber for a long period of time at 

least in the murine models (37)(38). 

With strong emphasis on the altered microbiome being associated with pathologies 

of inflammatory bowel disease, chronic liver disease, chronic fatigue syndrome and 

neuronal complications (all have an inflammatory component) via the gut-brain axis, it is 

important that studies be focused on bacterial metabolites within the gut that might be 

linked to some or all the pathways that link these systemic complications. Interestingly, 

GWI patients present significant symptoms that resemble some or all these in the clinics. 

Thus bacterial metabolites like butyric acid, propionic acid and acetate need to be 

considered as molecules of interest in treating multiple symptoms of GWI since these 

molecules have shown promising results in the clinic to cure IBD and dysbiosis related 

complications (39) (40)(41). Further, Butyrate-producing bacteria such as Roseburia 

species supplementation rescued patients from IBD (41). Butyrate, in particular, is a short 

chain fatty acid (SCFA) that primarily interacts with the GPR109A and is an 
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immunosuppressant widely known to increase T-regulatory cells in the intestine and a 

prominent HDAC1 inhibitor (42)(43). 

The present study tests the hypothesis that GW chemical exposure causes a 

decrease in butyrate-producing bacteria and concomitant butyrate priming in the gut 

through oral supplementation attenuates GI inflammation, gut leaching and metabolic 

abnormalities in the liver and higher systemic leptin levels. The study uses state of the art 

genomic approaches and an oral priming by butyrate for elucidating genus-specific changes 

in gut bacteria, and human hepatocytes treated with an insect repellent permethrin, (used 

in Gulf War theater) for mechanistic investigations. 

2.2. MATERIALS AND METHODS 

 

2.2.1. Materials 

 

Pyridostigmine bromide (PB), Permethrin (Per), Lipopolysaccharides (LPS), 

Corticosterone and Sodium butyrate (NaBT) were purchased from Sigma-Aldrich (St. 

Louis, MO). Anti-claudin-2, anti-occludin, anti-TLR4, anti-flotillin, anti-HMGBl, anti-

Leptin and anti-IL1β primary antibodies were purchased from Abeam (Cambridge, MA). 

Anti-TLR5 primary antibody was purchased from Santacruz Biotechnology (Dallas, TX). 

Species-specific biotinylated conjugated secondary antibodies and Streptavidin-HRP 

(Vectastain Elite ABC kit) were purchased from Vector Laboratories (Burlingame, CA). 

Fluorescence-conjugated (Alexa Fluor) secondary antibodies, ProLong Gold antifade 

mounting media with DAPI were purchased from Thermofisher Scientific (Grand Island, 

NY) and all other chemicals which were used in this project purchased from sigma only if 

otherwise specified. Paraffin-embedding of tissue sections on slides were done by AML 
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laboratories (Baltimore, MD). Microbiome analysis was done by Second Genome, the 

microbiome company (San Francisco, CA). 

2.2.2. Animals 

 

Adult wild-type male (C57BL/6J mice) and adult mice that contained the disrupted 

TLR4 gene (TLR4 KO) (B6·B10ScN-Tlr4lps-del / JthJ) were purchased from the Jackson 

Laboratories (Bar Harbor, ME). Mice were implemented in accordance with NIH guideline 

for human care and use of laboratory animals and local IACUC standards. All procedures 

were approved by The University of South Carolina at Columbia, SC. Mice were housed 

individually and fed with chow diet at 22–24 °C with a 12-h light/ 12-h dark cycle. All 

mice were sacrificed after animal experiments had been completed. Right after anesthesia, 

blood from the mice was drawn using cardiac puncture, in order to preserve serum for the 

experiments. The mice liver was collected for further experiments immediately after 

terminal euthanasia. Fecal pellets and luminal contents were collected from the animals, 

followed by dissection of the small intestine. The tissues were fixed using 10% neutral 

buffered formalin. Distal segments of small intestines were used for the staining and 

visualizations. 

2.2.3. Rodent model of Gulf War Illness (GWI) 

 

Mice were exposed to Gulf War chemicals based on established rodent models of 

Gulf War Illness with some modifications (25)(44). The treated wild-type mice group 

(GWI) and treated TLR4 KO mice group (TLR4 KO) were dosed triweekly for one week 

with PB (2 mg/kg) and Permethrin (200 mg/kg) via the oral route. After completion of 

PB/Permethrin dosages, mice were administered corticosterone intraperitoneally (i.p.) with 
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a dose of 100 μg/mice/day for 5 days of the week for one week. The dose of corticosterone 

was selected from the study which exposed mice to 200mg/L of corticosterone through 

drinking water. The i.p. dose of corticosterone had similar immunosuppression as 

examined by low splenic T cell proliferation (data not shown). The vehicle control group 

(Veh) of mice received saline injections and vehicle for oral gavage in the same paradigm. 

Another group of wild-type mice was exposed with PB, Permethrin and corticosterone 

similar to GWI group of mice and co-exposed with sodium butyrate (GWI + NaBT) 10 

mg/kg via the oral route. 

2.2.4. Microbiome analysis 

 

Fecal pellets and luminal contents were collected from the animals of each group 

after sacrifice and then sent to Second Genome and School of Medicine, the University of 

South Carolina for microbiome analysis. The second Genome performed nucleic acid 

isolation with the MoBio PowerMag Microbiome kit (Carlsbad, CA) according to 

manufacturer’s guidelines and optimized for high-throughput processing V3-V4 

sequencing and bioinformatic analysis. 

2.2.5. Cell culture 

 

Freshly isolated primary human hepatocytes were obtained from Liver Tissue Cell 

Distribution System, University of Minnesota, Minneapolis, MN. Plated hepatocytes were 

maintained in DMEM media supplemented with 10% FBS until treated. Cells were then 

serum starved in DMEM supplemented with 1.5% FBS for 8h and exposed to vehicle 

control and chemicals. Cells were then treated with vehicle (Veh Cont), LPS (1 μM), LPS 
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+ NaBT (LPS 1 μM and Sodium Butyrate 0.2mg/mL) for 24 h. After experiment cells were 

harvested for mRNA extraction and gene expression analysis. 

2.2.6. Laboratory methods 

 

 Immunohistochemistry 

The distal part of small intestine was collected from mice and fixed in 10% neutral 

buffered formalin. The fixed tissues swiss rolled, paraffin embedded and cut in 5 μM thick 

section. These sections were subjected to deparaffinization using a standard protocol. 

Epitope retrieval solution and steamer (IHC-Word, Woodstock, MD) were used for epitope 

retrieval for deparaffinized sections. 3% H2O2 was used for the recommended time to block 

the endogenous peroxidase. After serum blocking, the tissue was incubated overnight at 

4.0 °C with primary antibody IL1β. Species-specific biotinylated conjugated secondary 

antibodies and streptavidin conjugated with HRP were used to implement antigen-specific 

immunohistochemistry. 3,3′-Diaminobenzidine (DAB) (Sigma Aldrich, St Louis, MD) was 

used as a chromogenic substrate. Mayer’s Hematoxylin solution (Sigma Aldrich) was used 

as a counterstain. Sections were washed between the steps using phosphate buffered saline 

1×. Finally, stained sections were mounted with Simpo-mount (GBI laboratories, Mukilteo, 

WA). Tissue sections were observed using Olympus BX51 microscope (Olympus, 

America). Cellsens software from Olympus America (Center Valley, PA) was used for 

morphometric analysis of images. 

Immunofluorescence staining 

Paraffin-embedded distal part of the small intestine or liver sections were 

deparaffinized using a standard protocol. Epitope retrieval solution and steamer were used 
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for epitope retrieval of sections. Primary antibodies such as anti-Claudin-2, anti-Occludin, 

anti-GPR109A, anti-TLR4, anti-Flotillin, and anti-TLR5 were used at the recommended 

dilution. Species-specific secondary antibodies conjugated with Alexa Fluor (633-red and 

488-green) were used at advised dilution. In the end, the stained sections were mounted 

using Prolong gold antifade reagent with DAPI. Sections were observed under-Olympus 

fluorescence microscope using 20×, 40× or 60× objective lenses. 

Real-time quantitative PCR 

mRNA expression in small intestine, liver, and human primary hepatocytes was 

examined by quantitative real-time PCR analysis. Total RNA was isolated from each 25 

mg liver tissue or 15 mg small intestine tissue or 1 × 106 primary human hepatocytes cell 

by homogenization in TRIzol reagent (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instructions and purified with the use of RNeasy mini kit columns (Qiagen, 

Valencia, CA). cDNA was synthesized from purified RNA (1μg) using iScript cDNA 

synthesis kit (Bio-rad, Hercules, CA) following the manufacturer’s standard protocol. 

Real-time qPCR (qRTPCR) was performed with the gene-specific primers using 

SsoAdvanced SYBR Green Supermix and CFX96 thermal cycler (Bio-rad, Hercules, CA). 

Threshold Cycle (Ct) values for the selected genes were normalized against respective 

samples internal control (18S). Each reaction was carried out in triplicates for each gene 

and for each sample. The relative fold change was calculated by the 2-ΔΔCt method. The 

sequences for the primers used for Real-time PCR are provided in Table 1 
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Table 2.1. Real-time PCR primer sequences. 

Genea Primer sequence (5′ to 3′ orientation) 

MM_IL-1β Sense: CCTCGGCCAAGACAGGTCGC 
Antisense: TGCCCATCAGAGGCAAGGAGGA 

MM_MCP-1 Sense: CACAGTTGCCGGCTGGAGCAT 
Antisense: GTAGCAGCAGGTGAGTGGGGC 

MM_TNF-α Sense: CAACGCCCTCCTGGCCAACG 
Antisense: TCGGGGCAGCCTTGTCCCTT 

MM_SREBP1c Sense: GGAACAGACACTGGCCGA 
Antisense: AAGTCACTGTCTTGGTTGTTGAT 

MM_PPAR-α Sense: AGACCTTCGGCAGCTGGTCAC 
Antisense: GTGGCAACGGCCTGCCATCT 

MM_PPAR-γ Sense: TTCGCTGATGCACTGCCTAT 
Antisense: GGAATGCGAGTGGTCTTCCA 

MM_GLUT-1 Sense: CCTGTCTCTTCCTACCCAACC 
Antisense: GCAGGAGTGTCCGTGTCTTC 

MM_GLUT-4 Sense: CACCGGCAGCCTCTTATCAT 
Antisense: CACCGAGACCAACGTGAAGA 

MM_PFK Sense: GCCGTGAAACTCCGAGGAA 
Antisense: GTTGCTCTTGACAATCTTCTCATCAG 

Hs_SREBP1c Sense: CATGGATTGCACTTTCGAA 
Antisense: GGCCAGGGAAGTCACTGTCTT 

Hs_PPAR-γ Sense: GGCTTCATGACAAGGGAGTTTC 
Antisense: AACTCAAACTTGGGCTCCATAAAG 

aMM: Mouse specific primers, Hs: Human specific primers. 

Elisa 

Serum Leptin and serum HMGB1 was estimated using ELISA kits from Abclonal 

Biotechnologies (Woburn, MA) following manufacturer protocol. Serum IL1β was 

estimated using an ELISA kit from ProteinTech (Rosemont, IL) following manufacturer 

protocol. 
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Serum biochemistry tests 

Biochemical analysis of mouse serum was done for ALT, urea Nitrogen, creatinine, 

cholesterol, triglycerides and glucose from the University of Georgia college of veterinary 

medicine. 

2.2.7. Statistical analysis 

 

Prior to initiation of the study, we conducted calculations for each experimental 

condition with appropriate preliminary data to confirm that the sample number is sufficient 

to achieve a minimum statistical power of 0.80 at an alpha of 0.05. All in vivo and in vitro 

experiments were repeated three times with 3 mice per group (N = 3; data from each group 

of three mice were pooled). Student’s t-test was used to compare means between two 

groups at the termination of treatment. A one-way ANOVA was applied as needed, to 

evaluate differences among treatment groups followed by the Bonferroni post-hoc 

correction for intergroup comparisons. 

2.3. RESULTS 

 

2.3.1. Butyrate production is key to gut health in GW-chemical exposure and microbial 

dysbiosis 

We have shown previously that GW chemical exposure caused a significant 

alteration in microbial population when compared to untreated controls with significant 

increases in Firmicutes-Bacteriodetes ratio, a trend that is uniformly observed in IBD, 

neuroinflammation and metabolic syndrome. The changes were consistent with the 

neuroinflammatory phenotype in the mouse model of GWI. On in-depth analysis of the 

microbial data, we found that GW-chemical exposed group showed a marked decrease in 
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Lactobacillus, and Bifidobacterium sp., the genus being responsible for producing the short 

chain fatty acid butyrate. Interestingly butyrate has been shown to attenuate IBD and resists 

proinflammatory changes in the small intestine (Fig. 1A) (p < 0.05). The two genus showed 

a > 5 fold (log scale) decrease in abundance (Fig. 1A). Butyrate priming through oral 

gavage and its presence during exposure significantly elevated the levels of 

Bifidobacterium, butyrogenic bacteria Roseburia sp. and Lactobacillus (i, ii and iii) (Fig. 

1B) (p < 0.05) when compared to GWI alone with the first two genera showing an increase 

up to > 60% when compared to GWI. The percentages noted in the figure are compared to 

the overall abundance of all genus detected in the metagenomic analysis. The comparisons 

between GWI and GWI + NaBT groups were done using GWI as the base line. Such a 

comparison showed a > 60% increase of these genus in GWI + NaBT group when 

compared to GWI alone (Fig. 1B). The observations in Fig. 1A led to the rationale for using 

Butyrate as a viable molecule for attenuating microbiome-associated inflammatory 

phenotype and the subsequent changes observed in the GWI model. Butyrate exerts its 

actions via binding to the niacin receptor. GPR109A has been recently discovered to bind 

butyrate and stimulate the activation of Treg cells thus suppressing TH17 mediated 

proinflammatory events (43). Our results showed that there is a significant decrease in the 

protein levels of GPR109A in GW-chemical exposed group when compared to untreated 

controls (Fig. 2A and D) (p < 0.05). Butyrate presence in the intestine via feeding GW-

exposed mice through an oral gavage significantly increased GPR109A protein levels in 

the villi regions when compared to GWI-group (Fig. 2A and D) (p < 0.05) suggesting that 

butyrate presence resisted the decrease in GPR109A protein levels thus helping butyrate to 
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exert its actions in the dysbiosis-affected small intestine and restore gut-epithelial cell 

integrity and metabolic homeostasis. 

2.3.2. Butyrate priming through oral route restores tight junction protein levels 

 

The epithelial tight junction determines the paracellular water and ion movement 

in the intestine and also prevents uptake of larger molecules, including antigens, in an 

uncontrolled manner where Claudin-2 and Occludin play a major role and are perceived as 

a marker for leaky gut (45). Our results from immunofluorescence microscopy for the 

immunoreactivity of Claudin-2 showed a significant increase in GW-chemical exposed 

group when compared to untreated controls (Fig. 2B and E) (p < 0.05), thus confirming 

our previously reported data. Butyrate presence in GW-chemical exposed group showed a 

significant decrease in that group when compared to GW-chemical exposed group alone 

suggesting a parallel role of butyrate in Claudin-2 protein levels in the small intestine (Fig. 

2B and E) (p < 0.05). The results also showed that butyrate priming nearly restored the 

Claudin-2 levels to untreated controls (Fig. 2B). Similarly, the protein level of another tight 

junction protein Occludin was significantly decreased in GW-chemical exposed groups 

(Fig. 2C and F) and sodium butyrate treatment significantly restored the levels of Occludin 

in the intestine. The results suggested that Butyrate may have a previously unconfirmed 

role in modulating Claudin-2 and Occludin proteins in the small intestine though ILlOA-

dependent repression of Claudin-2 has been shown (46)
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2.3.3. Butyrate priming in the intestine attenuates proinflammatory phenotype in the 

intestine via a decrease in TLR4 activation 

 

Since gut leaching was predominant in GWI mouse model and resulted in 

endotoxemia, we studied whether butyrate priming helped in attenuating the 

proinflammatory microenvironment in the small intestine (29). Results showed that 

butyrate administration through an oral route decreased TLR4 colocalization (as shown by 

white circles), a hallmark of its activation in GW-chemical exposed group when compared 

to GW-group alone (Fig. 3A and B) (p < 0.05). Notably, the results also confirmed our 

earlier observations of an increased TLR4 trafficking to lipid rafts in GW chemical exposed 

group when compared to untreated controls (Fig. 3A and B) (p < 0.05). TLR4 activation 

was followed by increased IL-1β protein levels in the villi regions but not in crypts of GW 

chemical exposed group when compared to untreated controls (Fig. 4A and B) (p < 0.05). 

Also, butyrate priming significantly decreased the IL-1β levels in the same regions when 

compared to GW-Chemical exposed group (Fig. 4A and B). Gene expressions of IL-1β, 

monocyte chemoattractant MCP-1 and TNF-α were significantly decreased in Butyrate 

administered group when compared to GW-chemical exposed group (Fig. 4C) (p < 0.05). 

Interestingly, serum IL-1β significantly increased in GW-chemical exposed groups (66.71 

± 1.98pg/mL) as compared to vehicle control group (39.95 ± 1.8pg/mL) (Fig. 4D). 

However, Butyrate exposure to the GW-Chemical exposed mice showed a significant 

decrease in the serum IL-1β (34.56 ± 1.26pg/mL) (Fig.4D). The results suggested that 

butyrate presence helped attenuate intestinal inflammation primarily from a TLR4 pathway 

however it could not rule out other parallel inflammatory pathways in the gut such as 

histone deacetylases. 



www.manaraa.com

 

22 

Similar to pathogen-associated molecular patterns (PAMPs), that can trigger a 

proinflammatory response, sterile inflammation can be triggered by endogenous molecules 

from a necrotic or damaged cell that can activate several proinflammatory pathways 

including TLR4 (47). Such endogenous molecules are collectively called Damage-

associated molecular patterns or DAMPs. We have shown previously that HMGB1 and 

leptin can be released from several organ systems and can trigger a proinflammatory 

cascade (48)(49)(50). We quantified the released HMGB1 and leptin in mouse serum using 

competitive ELISA techniques. Result showed that GW-chemical exposed groups had 

significantly higher levels of HMGB1 and leptin in the serum when compared to untreated 

controls (Fig. 5A and B) (p < 0.05). Butyrate priming significantly decreased the level of 

HMGB1 while a decrease in leptin levels was not significant when compared to GW-

chemical exposed group (Fig. 5A and B) (p < 0.05). The results suggested that circulatory 

DAMPs can be soluble mediators of ectopic inflammatory events distant to the small 

intestine while butyrate priming may attenuate such effects and help identify therapeutic 

targets in the systemic inflammatory phenotype seen in GWI. 

2.3.4. Increased TLR activation in the liver is attenuated by butyrate priming in the 

intestine 

 

TLR activation is observed in organ systems following gut dysbiosis (51)(52). 

TLRs especially TLR4, TLR2, and TLR5 have been shown to increase tissue inflammation 

(52). Interestingly, TLR-induced metabolic deregulation is increasingly seen as an 

important event in metabolic syndrome (53). Our results showed that GW chemical 

exposed group showed a significantly increased TLR4 activation (trafficking to lipid rafts) 

in the liver especially in the sinusoidal cells (white circles) (Fig. 6A and B). TLR4 
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trafficking significantly decreased in butyrate administered group when compared to GW-

chemical exposed group (Fig. 6A and B). Interestingly, butyrate administration markedly 

increased TLR4 protein (red) levels in the liver but could not be observed in the rafts of 

the membrane (yellow), a sign that TLR4 protein was increased but the activation was 

attenuated by butyrate administration (Fig. 6A). TLR5 a protein that is activated the 

following binding with flagellin also increased in the liver of GW exposed mice but was 

significantly decreased in the butyrate administered group (Fig. 6C and D). The results 

suggested that increased circulatory levels of DAMPs or a leaky gut-associated flagellin 

might have resulted in activation of TLR4 and TLR5 in the liver of GW chemical exposed 

group but was blocked by the presence of butyrate. 

2.3.5. TLR4 activation is associated with metabolic changes and inflammatory 

response in the liver but the phenotypic liver injury is predominantly absent 

 

The liver is the principal organ for gluconeogenesis, lipogenesis and cholesterol 

metabolism (54). Recent studies have put a great deal of emphasis on liver metabolic 

reprogramming in conditions of metabolic syndrome that include hepatic expression of 

lipid and glucose metabolism markers, hepatic insulin and leptin resistance (36)(55). 

Interestingly, the fatty liver disease is associated with a long-term metabolic alteration 

(often years to manifest) and inflammatory response in the liver till the disease phenotype 

surfaces and is rightly called a silent disease (56). We studied both the changes in hepatic 

metabolic markers and the inflammatory response arising from a TLR4 activation 

following GW-chemical exposure and microbial dysbiosis to ensure whether we can detect 

early responses in the liver that can manifest into liver disease years later. Results showed 

that hepatic SREBP1c, a molecule predominantly responsible for lipogenesis was 
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upregulated following GW-chemical exposure when compared to untreated controls (Fig. 

7A) (p < 0.05) (57). Butyrate administration significantly decreased SREBP1c gene 

expression in the hepatic lobule when compared to GW-chemical exposed group (Fig. 7A) 

(p < 0.05). PPAR-α is a transcription factor and a major regulator of lipid metabolism in 

the liver (58). PPAR-α is activated under conditions of energy deprivation and is necessary 

for the process of ketogenesis (58). PPAR-α was significantly upregulated in the GW-

chemical exposed group when compared to untreated controls while butyrate 

administration significantly decreased and restored the PPAR-α levels when compared to 

GW-chemical exposed group (Fig. 7A) (p < 0.05). PPAR-γ is an important player in liver 

fat metabolism and is known to be increased in benign steatosis but is significantly down-

regulated in models of liver injury (36). Our results showed that PPAR-γ was significantly 

decreased in GW chemical exposed group when compared to untreated controls and 

butyrate priming reversed this downregulation when compared to GW-chemical exposed 

group (Fig. 7A) (p < 0.05). The results were in agreement with our previous studies in a 

liver metabolic disease that had similar decreases in PPAR-γ (36). 

We have shown previously that liver metabolic disorders triggered by 

environmental contaminants can increase the expression of Phosphofructokinase (PFK) 

(36). PFK, a rate-limiting enzyme in the glycolytic pathway was significantly upregulated 

in GW chemical exposed group when compared to untreated controls while butyrate 

administration significantly restored the PFK levels (Fig. 7A) (p < 0.05). Hepatic class I 

glucose transporters (GLUT) have limited role in the liver but recent studies show their 

importance in hepatic disease states (59). We and others have shown that GLUT-1 and 

GLUT-4 are regulated by leptin and purinergic signaling and they are upregulated in fatty 
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liver disease primarily in hepatic stellate cells (50)(60). Our results show that both GLUT-

1 and GLUT-4 were upregulated in the GW chemical exposed groups when compared to 

untreated controls however butyrate administration significantly decreased the GLUT-1 

and GLUT-4 levels when compared to GW-chemical exposed groups (Fig. 7A) (p < 0.05). 

Further, to investigate the role of GW-Chemical exposure in exacerbating the inflammatory 

response in liver, hepatic mRNA expression profiles of interleukin (IL)-lp, monocyte 

chemotactic protein 1 (MCP-1), tumor necrosis factor (TNF)-α and Kupffer cell activation 

marker CD68 were analyzed. Results indicated that there was a significant increase in the 

mRNA expression profiles of IL-1β, MCP-1, TNF-α and CD68 in GW Chemical exposed 

mice livers compared with vehicle treated mice livers (Fig. 7B) (p < 0.05). Interestingly, 

mice groups co-exposed with GW chemicals and sodium butyrate showed significantly 

decreased level of IL-1β, MCP-1, and CD68 but not TNF-α. The results suggested a similar 

role of higher leptin and/or heightened inflammation in causing the increase but remained 

to be seen whether it was cell or organ specific. 

The liver has multiple cell types and includes cells of epithelial, endothelial, 

fibroblast and macrophage lineages. They perform multiple functions including metabolic, 

cellular defense and wound healing. The liver lobule comprises of 90% hepatocytes which 

are epithelial in origin and is a center for most of the metabolic functions. We used human 

primary hepatocytes, primed with lipopolysaccharide (LPS) (concentrations found in our 

previous study (29) to study the effects of metabolic dysregulation if any due to GW-

chemical exposure. Results showed that LPS primed hepatocytes showed a significant 

increase in lipogenesis mediator SREBP1c while butyrate co-exposure decreased these 

levels (Fig. 7C) (p < 0.05). Similar to our in vivo data, LPS primed hepatocytes showed a 
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significant increase in PPAR-γ gene expression when co-exposed to butyrate while LPS 

only or untreated controls showed no change in the PPAR-γ levels (Fig. 7C) (p < 0.05). 

Hematoxylin and Eosin stains of liver tissue sections obtained from GW-chemical 

exposed group showed no signs of lipid accumulation or macrophage infiltration or 

Mallory body formation signifying the absence of advanced stage inflammatory foci or 

liver disease (Fig. 7D). Though histopathology of the liver section from each mice group 

clearly showed that there was no sign of liver damage or development of Nonalcoholic 

steatohepatitis, we resorted to clinical chemistry analysis for more detailed outcomes. To 

confirm such observations, we performed clinical chemistry analysis of mouse serum 

samples for ALT, BUN, creatinine, total cholesterol, triglyceride and serum glucose. The 

clinical chemistry data showed (Table 2) that there was no significant difference in serum 

ALT (showed a marked increase in GWI group but was not significant between groups), 

BUN, creatinine and total cholesterol upon GW Chemical exposure as compared to vehicle 

control group. However, co-exposure with sodium butyrate decreased the levels of ALT, 

BUN but not the total cholesterol (Table 2). The triglyceride levels were significantly 

increased in GWI chemical exposed mice groups as compared to untreated control groups, 

while co-exposure with sodium butyrate caused the triglyceride level to be decreased 

significantly when compared to GWI group (p < 0.05) suggesting a slow but incremental 

risk of fatty liver in the future (Table 2). The glucose levels showed no significant 

difference between groups (data not shown). 
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3.6. TLR4 drives the metabolic alterations in GW-chemical exposed liver 

 

TLR4 induced downstream proinflammatory signaling has been found to aid in 

insulin resistance (61). Prolonged insulin resistance has been shown to cause metabolic 

disturbances in the liver, skeletal muscle and adipose tissue (53). Since microbiome 

associated gut leaching and systemic endotoxemia were reported in the mouse model of 

GWI and the present study found metabolic changes in the liver, we studied the direct role 

of TLR4 in causing the metabolic changes. The results showed that TLR4 knockout (TLR4 

KO) mice had decreased TLR5 expression in the liver when compared to GW-chemical 

exposed group (Fig. 8A and B) (p < 0.05). TLR4 KO mice had significantly decreased 

expression of Class I glucose transporter GLUT-4, PFK, PPAR-α, and lipogenesis mediator 

SREBP1c when compared to GW-chemical exposed group while GLUT-1 showed no 

change in the expression suggesting GLUT-1 might not be regulated by TLR4 (Fig. 8C) (p 

< 0.05). The results suggested that TLR4 activation following systemic endotoxemia might 

be responsible for the ectopic metabolic alterations in the liver but is unable to present any 

significant changes in liver disease phenotype. The results also are in agreement with 

epidemiological studies where veterans deployed in GW don’t report liver abnormalities 

in the clinics based on the typical symptoms. 

2.4 DISCUSSION 

 

Epidemiological studies have shown a strong correlation between GW toxicant 

exposures and cognitive/neurological complications but there are also reports of chronic 

fatigue, gastrointestinal disturbances and occasional cases of metabolic syndrome (3) . Our 

study shows that microbial dysbiosis owing to GW-chemical exposure causes a significant 
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decrease in healthy gut bacteria like Bifidobacterium and Lactobacillus (62). Interestingly, 

they are a class of bacteria that generate butyrate in the gut (62). Recent studies have shown 

a beneficial effect of butyrate in preclinical studies involving colitis and IBD (39) The 

above results prompted us to use sodium butyrate administration through an oral route as 

a priming agent throughout the chemical exposure time so that a restored butyrate in the 

gut could prevent and prime the gut against the dysbiosis, inflammatory leaching, and 

generation of systemic mediators in the small intestine. Results also showed the role of 

butyrate in increasing the levels of the butyrogenic bacteria, increasing the expression of 

butyrate receptor GPR109A, decreasing Claudin- 2 and decreasing TLR4 activation. We 

have shown recently that GW chemical exposure causes gut dysbiosis, the disintegration 

of gut membrane causing leaching and systemic endotoxemia (29) that eventually led to 

TLR4 activation.  

We also showed a causal role of dysbiosis to the neuroinflammation in frontal 

cortex thus raising a possibility of the existence of a “Gut-Brain-Axis” in GWI similar to 

other pathological conditions (29). This axis may act in parallel to some of the direct toxic 

effects of GW chemical exposures on the brain tissue (63)(44). Sodium Butyrate priming, 

as shown in our data might reverse the pathology associated with GW chemical exposure 

since it restored gut health, reversed gut barrier integrity and decreased SI inflammation 

(decreased IL-1β) while increasing the possibility of increased butyrate binding to 

GPR109A due to higher availability of this receptor in SI. Notably, butyrate priming also 

decreased the release of HMGB1 and leptin though slightly in circulation albeit from the 

intestinal epithelial cells but other sources like liver cannot be ruled out. The source might 

be the damaged epithelial cells in the small intestine since the potential generation of free 
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radical species has been shown before and oxidative stress in the intestinal epithelial cells 

and macrophages could release HMGB1 (64).  

On the other hand, HMGB1 release due to gut integrity changes also causes 

oxidative stress and cell necrosis as have been reported in other studies (64). Though leptin 

is primarily released from adipocytes and liver, chemical/food-induced leptin release have 

been shown in the gut and has been traced in duodenal juice (65)(66). Thus, our finding of 

increased leptin in circulation following GW chemical exposure might be a result of the 

leaky gut or liver though the exact source remains to be determined at this time. The release 

of both leptin and HMGB1 and its modulation by butyrate priming in the gut points to the 

intestine as a source of these inflammatory mediators along with endotoxin and has 

tremendous implication determining ectopic/endocrine pathology of GWI. 

In spite of well-coordinated symptom reporting in GWI about chronic fatigue in 

most of the studies, the causes of such chronic fatigue have been limited to abnormalities 

in neurological pathways or mitochondrial dysfunction without an organ-specific 

definition (67). Presence of symptoms related to metabolic syndrome or liver diseases is 

rare (68). Interestingly, fatigue is also associated with metabolic syndrome and various 

liver diseases (69)(70)(71). Though we hardly see literature reporting liver abnormalities 

in GWI, asymptomatic metabolic abnormalities in the liver (as evident in silent liver 

diseases like NAFLD), can contribute to chronic fatigue. These facts mentioned above led 

us to examine the liver pathology likely affected by higher circulatory mediators like 

endotoxin, leptin, and HMGB1. Owing to the tremendous role of the liver in carbohydrate 

metabolism, we focused on the role of circulatory HMGB1 and leptin on (a) hepatic TLR4 

activation and (b) alterations in both lipid and carbohydrate metabolism.  
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Our results showed a significant increase in TLR4 trafficking to the lipid rafts, a 

hallmark of activation of the TLR4 pathway in the liver following exposure to GW-

chemicals. Also, there was a subsequent increase in TLR5 levels in the liver with both 

TLR4 activation and TLR5 levels showing decreases after butyrate priming. These results 

assume huge significance since TLR4 activation has been found to cause insulin resistance, 

uptake of free fatty acids for triglyceride production in macrophages and sterol biosynthesis 

(72)(53). On the other hand, stearic acid has been shown to promote TLR4 mediated 

inflammation (73) (74). Our results of increased expression of genes such as SREBP1c and 

PPAR-α which play a major role in liver lipogenesis (cholesterol biosynthesis and import) 

might be the result of the increased TLR4 activation and the subsequent cascade of events 

that alter liver metabolism following GW-chemical exposure. Interestingly, both SREBP1c 

and LXRs control lipid metabolism and it remains to be seen whether an increase in 

SREBP1c in the GW-chemical exposed liver was an adaptive way to suppress a chronic 

TLR4 activation thus mounting an anti-inflammatory response as is seen in some studies 

(75)(76). There are numerous reports which find increased glucose metabolism following 

NF-kB activity which is downstream of TLR4 activation (77).  

Our results of increased expression of phosphofructokinase, a rate-limiting enzyme 

for glycolysis show that a TLR4 mediated mechanism might play a role in driving a 

glycolytic pathway in the liver. Notably, isolated hepatocytes when stimulated with TLR4 

ligand LPS or GW-chemical Permethrin did not show an increase in PFK but exhibited a 

3-fold increase in SREBP1c over vehicle control suggesting that hepatocytes along with 

macrophages may be targets of TLR4 activation thus playing a vital role in the 

reprogramming of lipid metabolism. Further, Class I glucose transporters GLUT-1 and 
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GLUT-4 was elevated in the GW-chemical exposed liver. The result assumes significance 

since inflammation in the liver has been shown to increase glucose uptake in hepatic 

stellate cells in a mouse model of fatty liver disease (50). Our results of decreased 

inflammation and subsequent metabolic disturbances in the liver following butyrate 

priming may shed some light on the inhibitory role of butyrate on histone deacetylase 

activity (78). Butyrate is a known HDAC inhibitor (78).  

Studies show that butyrate can act as an HDAC inhibitor and decrease NFκβ 

activity. We found a decrease in NFxβ activity following butyrate administration but was 

found to be insignificant (data not shown). Also, butyrate can act independently of TL4 

activation by inhibiting HDACs (79). Future studies should target the extensive role of 

butyrate in HDAC inhibiton in Gulf War Illness that may be independent of TLR4 

activation. Importantly, the results of altered expressions of the metabolic genes failed to 

induce any histological changes that support inflammatory or metabolic liver disease 

following GW-chemical exposure. This is of high significance since liver diseases take 

years to manifest and most remain asymptomatic (silent) thus evading most clinical 

observations. It remains to be seen whether the unavailability of reports related to liver 

complications in GWI is due to the silent nature of the manifestations that are only limited 

to changes in the expressions of metabolic genes and would perhaps take years to show 

any phenotypic disease. Finally, our studies with TLR4 gene-deficient mice exposed to 

GW chemicals reversed the levels of TLR5 and expressions for SREBP1c, PPAR-α, PFK 

and GLUT-4 emphasizing the fact that TLR4 activation was indeed responsible for the 

metabolic reprogramming in the liver. Further, the reversal of TLR4-inducible systemic 
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release of DAMPS and metabolic changes in the liver bodes well for a potential use of this 

compound for a gut-targeted therapy in GWI veterans. 

In summary, we show that GW-chemical exposure in mice and subsequent systemic 

inflammation following a dysbiosis in the gut could cause significant changes in the way 

the liver metabolizes lipid and carbohydrate with no detectable pathology while butyrate 

resists those changes. The study will help us advance our efforts to scrutinize clinical 

symptom reporting in the liver and re-evaluate the way we approach the therapeutic aspect 

of GWI by targeting multiple physiological pathways. Uses of short-chain fatty acids or 

probiotics can help in such pursuits. 

Acknowledgement 

 

The authors gratefully acknowledge the technical services of Benny Davidson at 

the IRF, University of South Carolina School of Medicine and AML Labs (Baltimore MD), 

and University of Georgia college of veterinary medicine for support in clinical blood 

chemistry test. We also thank the Instrumentation resource facility (IRF) at the University 

of South Carolina for equipment usage and consulting services. 

 

 

 

 



www.manaraa.com

 

33 

 

Figure 2.1. Gut microbiome alteration in mice model of Gulf War Illness (GWI). A. 
The proportional abundance of microbial genera: Graphical representation of the most 
abundant taxa of bacteria at the genus level. Groups compared are gulf war illness group 
(wild-type mice exposed to gulf war chemicals) (GWI, n = 3) and control group fed with 
vehicle (Veh, n = 3) (p-value: < 0.05). B. Percentage abundance of gut bacteria 
Bifidobacterium (i), Roseburia (ii), and Lactobacillus (iii) in a group of mice co-exposed 
with Gulf war chemicals and Sodium butyrate (GWI + NaBT, n = 3) as compared with 
GWI mice (n = 3) (p-value: < 0.05). 
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Figure 2.2. Change in gut microbiome in GWI alter niacin receptor (GPR109A) and 

tight junction proteins in the intestine. A. The expression pattern of butyrate and niacin 
receptor GPR109A was assessed by immunofluorescence microscopy. The representative 
images showed immunoreactivity of GPR109A in the distal part of the small intestine of 
veh control group of mice (veh, n = 3), gulf war illness group of mice (GWI, n = 3) and a 
group of mice co-exposed with GWI and sodium butyrate (GWI + NaBT, n = 3). B and C. 
The expression pattern of Claudin-2 and Occludin (tight junction proteins) was assessed 
by immunofluorescence microscopy. Tissue levels of Claudin-2 (B) and Occludin (C) in 
Vehicle control group of mice (Veh, n = 3), gulf war chemical treated group of mice (GWI, 
n = 3) and a group of mice co-exposed with GWI and sodium butyrate (GWI + NaBT, n = 
3) was assessed by immunofluorescent microscopy after labeling the protein with the red 
fluorescent secondary antibody and counterstained with DAPI (blue). D–F. The bar 
diagram shows the quantitative morphometric analysis of fluorescence intensities of 
GPR109A (D), Claudin-2 (E), and Occludin (F) immunoreactivity in the region of interest 
(ROI) in the small intestine. *(p < 0.05).  
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Figure 2.3. Sodium butyrate priming in a rodent model of GWI attenuates TLR4 

activation in the small intestine. A. Immunofluorescence microscopy of small intestine 
showing TLR4 (red) trafficking to the lipid rafts (green) of the small intestine tissue, an 
essential process for TLR4 activation causing a co-localization of TLR4 in flotillin-rich 
rafts (yellow). Representative images of TLR4-flotillin co-localization in the small 
intestine of vehicle control group of mice (Veh, n = 3), gulf war chemical treated group of 
mice (GWI, n = 3) and a group of mice co-exposed with GWI and sodium butyrate (GWI 
+ NaBT, n = 3) shown by white circles covering the yellow spots created by an overlay of 
red (TLR4) and green (Flotillin). Images were taken at higher magnification (40× oil). B. 
Graphical representation of the quantitative morphometric analysis of colocalization events 
in the region of interest (ROI) in the small intestine. Images for analysis were randomly 
chosen in different microscopic fields. Data is represented as Mean ± SEM and *(p < 0.05). 
(For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article. 
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Figure 2.4. Sodium butyrate priming in a rodent model of GWI improves 

proinflammatory phenotype in small intestine mediated by the TLR4 pathway. A. 
Small intestine tissue slices were probed for IL-1β immunoreactivity in vehicle control 
group of mice (Veh, n = 3), gulf war chemical treated group of mice (GWI, n = 3) and a 
group of mice co-exposed with GWI and sodium butyrate (GWI + NaBT, n = 3) using 
immunohistochemistry. Specific immunoreactivity to IL-1β is evident by dark brown 
spots. B. Graphical representation of morphometric analysis of the IL-1β immunoreactivity 
in tissue slices. Data normalized against vehicle control (veh) *(p < 0.05). C. Quantitative 
real-time PCR (qRTPCR) analysis of inflammatory markers in the small intestine. mRNA 
expression of IL-1β, MCP-1, and TNF-α was analyzed in the samples of vehicle control 
group of mice (Veh, n = 3), gulf war chemical treated group of mice (GWI, n = 3) and a 
group of mice co-exposed with GWI and sodium butyrate (GWI + NaBT, n = 3). 
Normalized mRNA expression is represented as a fold change of vehicle control (veh) on 
Y-axis. Data points represented with Mean ± SEM *(p < 0.05). D. Graphical representation 
of serum IL-1β in pg/mL of the samples of vehicle control group of mice (Veh, n = 3), gulf 
war chemical treated group of mice (GWI, n = 3) and a group of mice co-exposed with 
GWI and sodium butyrate (GWI + NaBT, n = 3) 
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Figure 2.5. Sodium butyrate treatment in GWI improves circulatory DAMPs. Similar 
to the pathogen-associated molecular pattern (PAMPs), the endogenous molecules called 
damage-associated molecular patterns or DAMPs (such as HMGB1) are linked with 
proinflammatory responses in distal organs. A. Western blot analysis of serum high 
mobility group box 1 protein (HMGB1) and serum adipokine leptin from samples of 
vehicle control group of mice (Veh, n = 3), gulf war chemical treated group of mice (GWI, 
n = 3) and a group of mice co-exposed with GWI and sodium butyrate (GWI + NaBT, n = 
3). Ponceau S staining was done to see the equal loading of serum proteins and used for 
normalization of protein expression. B–C. Graphical representation of morphometric 
analysis of HMGB1 and leptin western blot bands. The data was normalized to a total 
serum protein (Ponceau S). Y-axis depicts the HMGBl/Ponceau S ratio (B) and 
leptin/Ponceau S ratio (C) from Veh, GWI and GWI + NaBT groups. *p < 0.05 is 
considered statistically significant. D-E. Graphical representation of serum HMGB1 (D) 
and serum leptin (E) in ng/mL of the samples of vehicle control group of mice (Veh, n = 
3), gulf war chemical treated group of mice (GWI, n = 3) and a group of mice co-exposed 
with GWI and sodium butyrate (GWI + NaBT, n = 3). 
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Figure 2.6. Sodium butyrate treatment in a rodent model of GWI attenuates TLR4 

activation in Liver. A. Immunofluorescence microscopy of liver slices showing TLR4 
(red) trafficking to the lipid rafts (green), an essential process for TLR4 activation causing 
a co-localization of TLR4 in flotillin-rich rafts (yellow). Representative images of TLR4-
flotillin co-localization in the liver of vehicle control group of mice (Veh, n = 3), gulf war 
chemical treated group of mice (GWI, n = 3) and a group of mice co-exposed with GWI 
and sodium butyrate (GWI + NaBT, n = 3) shown by white circles covering the yellow 
spots created by an overlay of red (TLR4) and green (Flotillin). Images were taken at higher 
magnification (60× oil). B. Graphical representation of the quantitative morphometric 
analysis of colocalization events in the liver. Images for morphometric analysis were 
randomly chosen in different microscopic fields. Data is represented as Mean ± SEM *(p 
< 0.05). C. Tissue levels of TLR5 immunoreactivity in vehicle control group of mice (Veh, 
n = 3), gulf war chemical treated group of mice (GWI, n = 3) and a group of mice co-
exposed with GWI and sodium butyrate (GWI + NaBT, n = 3) mouse liver samples as 
observed by immunofluorescent microscopy after labeling the TLR5 protein with the green 
fluorescent secondary antibody and counterstained by DAPI (blue). D. The bar diagram 
shows the quantitative morphometric analysis of fluorescence intensities of TLR5 
immunoreactivity in the liver tissue. Images for morphometric analysis of TLR5 were 
randomly chosen in different microscopic fields. Data is represented as Mean ± SEM *(p 
< 0.05) 
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Figure 2.7. TLR4 activation is associated with metabolic changes and inflammatory 

response in the liver but the phenotypic liver injury is predominantly absent. A. 
Quantitative real-time PCR (qRTPCR) analysis principle carbohydrate metabolic markers 
(PFK, GLUT-1, and GLUT-4) and fat metabolic markers (SREBP1c, PPAR-α, and PPAR-
γ) in the liver tissue. mRNA expression of SREBP1c, PPAR-α, PPAR-γ and PFK, GLUT-
1, GLUT-4 and B. mRNA expression analysis of inflammatory marker IL-1β, MCP-1, 
TNF-α, and Kupffer cell activation marker CD68 were analyzed in the liver sample of 
vehicle control group of mice (Veh, n = 3), gulf war chemical treated group of mice (GWI, 
n = 3) and a group of mice co-exposed with GWI and sodium butyrate (GWI + NaBT, n = 
3). Normalized mRNA expression is represented as a fold change of Vehicle control (veh) 
on Y-axis. Data points represented with Mean ± SEM *(p < 0.05). C. mRNA expression 
of SREBP1c, PPAR-γ were analyzed in the primary human hepatocytes cells treated with 
lipopolysaccharide (LPS) and Co-treated with LPS and sodium butyrate (LPS + NaBT). 
Normalized mRNA expression is represented as a fold change of Vehicle control (Veh 
Cont) on Y-axis. Data points represented with Mean ± SEM *(p < 0.05). D. Representative 
Hematoxylin and Eosin stained (H&E) images of liver sections showed liver 
pathophysiology of vehicle control group of mice (Veh, n = 3), gulf war chemical treated 
a group of mice (GWI, n = 3). Images were taken at 10× magnification. 
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Figure 2.8. TLR4 drives the metabolic alterations in GW-chemical exposed liver. A. 
Tissue levels of TLR5 in Gulf War chemical treated a group of wild-type mice (GWI, n = 
3) and a group of TLR4 knockout mice (TLR4 KO, n = 3). Mouse liver samples as observed 
by immunofluorescence microscopy after labeling the TLR5 protein with green fluorescent 
secondary antibody and nuclear counterstaining by DAPI (blue). Images were taken at 60× 
(oil) magnification. B. The bar diagram showed the quantitative morphometric analysis of 
fluorescence intensities of TLR5 immunoreactivity in the liver tissue. *(p < 0.05). C. 
mRNA expression analysis of principle carbohydrate metabolic markers (PFK, GLUT-1, 
and GLUT-4) and fat metabolic markers (SREBP1c, PPAR-α) in the liver tissue of vehicle, 
GWI and TLR4 KO mice. Normalized mRNA expression is represented as a fold change 
of vehicle control (veh) on Y-axis. Data points represented with Mean ± SEM *(p < 0.05).  
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CHAPTER 3 
 

DYSBIOSIS-ASSOCIATED ENTERIC GLIAL CELL IMMUNE-ACTIVATION 

AND REDOX IMBALANCE MODULATE TIGHT JUNCTION PROTEIN 

EXPRESSION IN GULF WAR ILLNESS PATHOLOGY2

                                                           

2 Kimono, D., Sarkar, S., Albadrani, M., Seth, R., Bose, D., Mondal, A., Li, Y., Kar, A. 

N., Nagarkatti, M., Nagarkatti, P., Sullivan, K., Janulewicz, P., Lasley, S., Horner, R., 

Klimas, N., & Chatterjee, S. (2019). Dysbiosis-Associated Enteric Glial Cell Immune-

Activation and Redox Imbalance Modulate Tight Junction Protein Expression in Gulf 

War Illness Pathology. Frontiers in physiology, 10, 1229. 

https://doi.org/10.3389/fphys.2019.01229 
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ABSTRACT 

 

About 14% of veterans who suffer from Gulf war illness (GWI) complain of some 

form of gastrointestinal disorder but with no significant markers of clinical pathology. Our 

previous studies have shown that exposure to GW chemicals resulted in altered 

microbiome which was associated with damage associated molecular pattern (DAMP) 

release followed by neuro and gastrointestinal inflammation with loss of gut barrier 

integrity. Enteric glial cells (EGC) are emerging as important regulators of the 

gastrointestinal tract and have been observed to change to a reactive phenotype in several 

functional gastrointestinal disorders such as IBS and IBD. This study is aimed at 

investigating the role of dysbiosis associated EGC immune-activation and redox instability 

in contributing to observed gastrointestinal barrier integrity loss in GWI via altered tight 

junction protein expression. Using a mouse model of GWI and in vitro studies with cultured 

EGC and use of antibiotics to ensure gut decontamination we show that exposure to GW 

chemicals caused dysbiosis associated change in EGCs. EGCs changed to a reactive 

phenotype characterized by activation of TLR4-S100β/RAGE-iNOS pathway causing 

release of nitric oxide and activation of NOX2 since gut sterility with antibiotics prevented 

this change. The resulting peroxynitrite generation led to increased oxidative stress that 

triggered inflammation as shown by increased NLRP-3 inflammasome activation and 

increased cell death. Activated EGCs in vivo and in vitro were associated with decrease in 

tight junction protein occludin and selective water channel aquaporin-3 with a concomitant 

increase in Claudin-2. The tight junction protein levels were restored following a parallel 

treatment of GWI mice with a TLR4 inhibitor SsnB and butyric acid that are known to 

decrease the immunoactivation of enteric glial cells. Our study demonstrates that immune-
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redox mechanisms in EGC are important players in the pathology in GWI and may be 

possible therapeutic targets for improving outcomes in GWI symptom persistence.  

 

3.1. INTRODUCTION 

 

Gastrointestinal disturbances are one of the most commonly reported chronic 

symptoms among veterans who returned from the Persian Gulf war of 1990–1991(3,80,81). 

About 14% of veterans who suffer from Gulf War illness (GWI) complain of some form 

of gastrointestinal (GI) problems such diarrhea, pain and gas etc. (80,81). According 

to (30), the most commonly reported gastrointestinal issues reported among United States 

and British Gulf war (GW) veterans were diarrhea, vomiting, and stomach problems. A 

study by (80) showed veterans of the Persian GW presented with diarrhea and had rectal 

hypersensitivity as did (82) who reported increased somatic hypersensitivity and pain 

among some GW veterans with GI issues. 

Although the veterans report these symptoms, the prospective study by(81) did not 

find any significant clinical markers of disease pathology in blood or intestine tissue of 

deployed participants. Similarly, one of our own studies which reported metabolic 

reprogramming in liver as a result of leaky gut and endotoxemia did not find any 

biochemical markers of liver damage or altered metabolism in a mouse model of GWI. 

This was surprising because we had had previously shown that exposure to GW theater 

chemicals resulted in an alteration of gut microbiome and concomitant TLR4 mediated 

gastrointestinal and neuroinflammation with endotoxemia (29)(18). This elusive nature of 
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GWI is a strong reason for further studying underlying mechanisms of this condition in 

order to obtain effective therapies. 

Of emerging interest in inflammatory gastroenterology are enteric glial cells (EGC) 

which reside in close proximity with the neurons of the enteric nervous system. These cells 

are similar in structure and physiology to astrocytes of the brain but are not 

excitable(83)(84). Initially, the principal function of EGC was thought to be providing 

mechanical support to enteric neurons. However, recent studies have shown that these cells 

play an important role in regulating the gastrointestinal microenvironment through several 

mechanisms, which have been extensively reviewed (83)(85)(86). EGC were found to 

significantly modulate gut homeostasis through release of growth factors (87) cytokines 

and prostaglandins (87)(86) but may also play a pathogenic role by contributing to 

nitrosative stress and proinflammatory cytokines when exposed to stressful or toxic stimuli 

in the gut. Moreover, studies have found that EGC have the ability to “sense” a change in 

microbiome from probiotic to pathogenic, possibly through toll like receptors (TLRs). A 

study by (88), found that adhesive E. Coli seem to activate a TLR-S100β/RAGE-iNOS 

signaling pathway in human EGC, while probiotic lactobacillus did not. Another study 

found that when EGC were treated with lipopolysacharrides (LPS), there was activation of 

TLRs with a release of S100B and nitric oxide (NO) (89). In this reactive state, EGC 

produce proinflammatory cytokines and chemokines e.g., (IL-1β, TNF-α, MCP-1) and 

release of inducible NO which may contribute to oxidative stress in the gut (86,87,90)(84). 

In irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), it is well 

known that an altered microbiome plays a significant role in the pathogenesis of the disease 

(90). In IBS for example, patients were found to have a decrease in abundance of 
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Bifidobacteria and Lactobacillus but an increased prevalence of pathogenic species 

like Escherichia spp., Shigellas, and several Clostridia(91). Furthermore, it has been 

observed that metabolic diseases e.g., diabetes and obesity also present with increased ratio 

of Firmicutes to Bacteriodetes (92,93). Studies concerning the mechanisms of these 

gastrointestinal diseases have found that change of EGC phenotype from homeostatic to 

pathogenic is a characteristic of these diseases (94–96). A study by Wang et al. reported a 

significantly increased expression of glial fibrillary acidic protein (GFAP), Tyrosine 

receptor kinase B and Substance P in the colon of IBS patients with a correlated increase 

in intestinal inflammation(97). Other studies show that a loss in EGC resulted in poor 

gastrointestinal health characterized by loss of gut barrier integrity (98). 

Our previous research reported an altered microbiome in a murine model of GWI 

with increase in Firmicutes over Bacteriodetes and a decrease in several butyrogenic 

bacteria. This dysbiosis was accompanied by activation of TLR4, increased inflammation, 

a leaky gut, endotoxemia with release of damage associated molecular patterns (DAMPS) 

such as HMGB1 in gulf war chemical treated mice compared to controls (18,29,63). 

Interestingly, a recent study by Hernandez et al., showed that exposure to pyridostigmine 

bromide a known gulf war chemical exposure resulted in enteric neuronal and glial 

reactivity and inflammation (99). 

This current study investigates the contribution of EGC in observed inflammatory 

phenotype which we and others have observed in GWI. We test the hypothesis that, the 

altered microbiome which results in increased pathogen associated molecular patterns 

(PAMPS) (e.g., LPS, flagellin and other immunostimulatory bacterial parts), leaky gut and 

increase in circulatory DAMPS (e.g., HMGB-1) in GW-chemical (Permethrin and 
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pyridostigmine bromide) treated mice results in a reactive EGC phenotype compared to 

mice treated with vehicle control treated mice and mice co-exposed with GW chemicals 

and antibiotics. Through this reactive EGC phenotype intestinal cells such as enteric 

neurons and epithelial cells might be further affected leading to a vicious cycle of 

consistent proinflammatory state. This constant proinflammatory state of intestinal cells 

might answer the persistence of gastrointestinal, systemic and neuro inflammation in gulf 

war illness. The study uses a murine model of GWI and in vitro studies with EGCs and 

intestinal epithelial cells to elucidate possible mechanisms to explain this observed 

inflammation observed in GWI. 

3.2. MATERIALS AND METHODS 

 

Pyridostigmine bromide (PB), Permethrin (Per), Sodium Butyrate, Sparstolonin B 

(SsnB), Corticosterone, Neomycin trisulfate hydrate, Enrofloxacin, Apocynin (APO), 

Phenylboronic acid (FBA) were purchased from Sigma-Aldrich (St. Louis, MO, United 

States). Lipopolysaccharides (LPS), LPS-RS (TLR4 inhibibitor) were purchased from 

Cayman chemical company (Ann Arbor, MI, United States), Rat High mobility group box 

1 protein (HMGB-1) Rat (rec) (His) was purchased from Chimirigen, Mediatech, Inc. 

(Manassas, VA, United States), Anti-TLR4, anti-flotillin-1, anti-S100B, anti-GFAP, anti-

ASCII and anti-Caspase 1, anti-TLR5, anti-3NT, anti-GP91, anti-P47phox, anti-NOS 2, 

anti-HMGB-1 and anti-aquaporin-3 primary antibodies were purchased from Santa Cruz 

Biotechnology (Dallas, TX, United States), anti-claudin 2, anti-TLR2 and anti-occludin 

were purchased from Abclonal Technology (Woburn, MA, United States) was while anti-

NLRP-3, anti-RAGE were purchased from Abcam (Cambridge, MA, United States). 

Fluorescence-conjugated (Alexa Fluor) secondary antibodies, ProLong Gold antifade 



www.manaraa.com

 

48 

mounting media with DAPI were purchased from Thermofisher Scientific (Grand Island, 

NY, United States), Apoptosis ApopTag® Fluorecein in situ detection kit from Millipore 

(Billerica, MA, United States), The Pierce LAL Chromogenic Endotoxin Quantification 

Kit from Thermo Scientific (Waltham, MA, United States) and Griess reagent system from 

Promega corporation (Madison, WI). All other chemicals which were used in this study 

were purchased from Sigma unless otherwise specified. Paraffin-embedding of tissue 

sections on slides were done by AML laboratories (Baltimore, MD, United States). 

3.2.1. Animals 

 

Adult wild-type male (C57BL/6J mice) were purchased from the Jackson 

Laboratories (Bar Harbor, ME, United States). Mice were implemented in accordance with 

NIH guideline for human care and use of laboratory animals and local IACUC standards. 

All procedures were approved by The University of South Carolina at Columbia, SC, 

United States. Mice were housed individually on 7090 Sani-Chip bedding from Teklad 

(Madison, WI, United States) and fed with 8904 irradiated chow diet from Teklad 

(Madison, WI, United States) at 22–24°C with a 12-h light/12-h dark cycle. All mice were 

sacrificed after animal experiments had been completed. Immediately after terminal 

anesthesia, mice’s small intestine was collected and dissected for further experiments, 

while fecal pellets were collected from the colon and immediately stored in sterile 

Eppendorf tubes for microbiome analysis. The tissues were fixed using 10% neutral 

buffered formalin. Distal segments of small intestines were used for the staining and 

visualizations. 
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3.2.2. Rodent Model of Gulf War Illness (GWI) 

 

Mice were exposed to Gulf War chemicals based on established rodent models of 

Gulf War Illness with some modifications (44,63). The treated wild-type mice group (GW) 

were dosed tri-weekly for 1 week with PB (2mg/Kg) and Permethrin (200 mg/kg) by oral 

gavage. After completion of PB and Permethrin dosages, mice were administered 

corticosterone intraperitoneally (i.p.) with a dose of 100μg/mice/day for 5 days of the week 

for 1 week to represent war stress. The dose of corticosterone was selected from the study 

which exposed mice to 200 mg/L of corticosterone through drinking water. The i.p. dose 

of corticosterone had similar immunosuppression as examined by low splenic T cell 

proliferation (data not shown). The vehicle control group (CONT) of mice received saline 

injections and vehicle for oral gavage (6% DMSO) in the same paradigm. Similarly, 

another group of mice (GW + AB) were exposed to PB/Permethrin and corticosterone as 

in above mentioned dosages along with antibiotics (Neomycin 45 mg/kg and Enrofloxacin 

1mg/Kg) thrice per week for 2 weeks for intestinal decontamination and obtaining gut 

sterility, while another group (AB) were exposed to antibiotics (Neomycin, 45 mg/kg and 

Enrofloxacin 1 mg/Kg) for 2 weeks. A fifth group of mice was treated with PB/Permethrin 

and corticosterone, but with Sodium butyrate (10 mg/Kg) and Sparstolonin B (SsnB) 3 

mg/Kg (GW + SsnB + BT). We have shown before that SSnB is a potent TLR4 antagonist 

and Butyrate decreases intestinal inflammation in GWI. 
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3.2.3. Cell Culture 

 

Enteric Glial Cell Culture 

Immortalized rat EGC were obtained from ATCC® (ATCCCRL-2690). Plated 

EGC were maintained in DMEM media supplemented with 10% FBS until treated. Cells 

were serum starved in DMEM supplemented with 1% FBS for 12 h and then exposed to 

vehicle control and chemicals. Cells were then treated with vehicle control-PBS (VEH), 

LPS (1 μg/mL), HMGB-1 (100 ng/mL), SsnB (10 μg/mL), Sodium butyrate (5 mM)and 

inhibitors FBA (100 μM) and Apocynin (100 μM) with either HMGB-1, LPS or antibiotics 

(neomycin and enrofloxacin cocktail) at different dilutions ranging from (1X to 1000X) 

(see Supplementary Figures S2–S7) for 24 h. After which the experiment was terminated 

and cells were harvested for mRNA extraction, gene expression analysis and protein 

expression studies. Nitric oxide production was estimated from culture fluids by measuring 

nitrite formation using the Griess assay. 

Intestinal Epithelial Cell Culture 

Immortalized rat intestinal epithelial cells (IEC-6) ATCC© CRL-1592, were 

obtained from ATCC. The cells were maintained in DMEM media supplemented with 10% 

FBS and 1x ITS until treated. Cells were serum starved in DMEM supplemented with 1% 

FBS for 12 h and then primed with LPS (100 ng/mL) for 12 h. Cells were then treated with 

culture fluids from EGC (above) for 24 h, then harvested for further analyses. 
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3.3.4. Microbiome Analysis 

 

Microbiome was analyzed from fecal pellets and luminal contents collected from 

animals after sacrifice and sent to Second Genome for 16S rRNA sequencing. Microbial 

analyses were performed from isolated nucleic acids using the MoBio PowerMag 

Microbiome kit (Carlsbad, CA, United States), according to manufacturer’s instructions. 

The microbiome data is in NCBI EBI under the accession number PRJEB19474. 

3.3.5. Laboratory Methods 

 

Immunofluorescence Staining 

Paraffin-embedded distal part of the small intestine sections were deparaffinized 

using a standard protocol. Epitope retrieval solution and steamer were used for epitope 

retrieval of sections. Primary antibodies such as anti- GFAP, anti-S100β, anti-NOS2, anti-

NLRP-3, anti-ASCII, anti-GP91, anti-P47phox anti-TLR4, anti-Flotillin, anti-aquaporin3 

were used at the recommended dilution (1:200). Species-specific secondary antibodies 

conjugated with Alexa Fluor (633-red and 488-green) were used at advised dilution 

(1:300). Finally, the stained sections were mounted using Prolong gold anti-fade reagent 

with DAPI. Sections were observed under–Olympus fluorescence microscope using 20X, 

40X or 60X objective lenses, or under confocal microscopy using Leica SP-8 with LasX-

10 software at magnification of 63X. 

Western Blot 

Serum HMGB-1 levels were estimated from 35 μg of denatured mouse serum 

protein, while TLR2, 4 and 5 were estimated from 25 μg of denatured small intestine tissue 
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by a Western Blot analysis following standard protocols. Briefly, serum was concentrated 

and then diluted 1:5. Tissue protein or serum protein was then separated on a Novex 4–

12% bis-tris gradient gel and subjected to standard SDS-PAGE. The separated proteins 

were then transferred to a nitrocellulose membrane by a Trans-Blot Turbo transfer system. 

The membrane was then stained with Ponceau S, and then blocked with 5% BSA solution 

for 1 h, then incubated with primary antibody overnight at 4°C. Species-specific anti-IgG 

secondary antibody conjugated with HRP was used to tag primary antibody. ECL western 

blotting substrate was used to develop the blot The blot was then imaged using G:Box 

Chemi XX6 and subjected to densitometry analysis using Image J software. 

Real-Time Quantitative PCR 

Messenger RNA expression in small intestine and rat EGC was examined by 

quantitative real-time PCR analysis. Total RNA was isolated from each 15 mg small 

intestine tissue or 1 × 106 EGC by homogenization in Trizol reagent (Invitrogen, Carlsbad, 

CA, United States) according to the manufacturer’s instructions and purified with the use 

of RNeasy mini kit columns (Qiagen, Valencia, CA, United States). cDNA was synthesized 

from purified RNA (1 μg) using iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, 

United States) following the manufacturer’s standard protocol. Real-time qPCR (qRTPCR) 

was performed with the gene-specific primers using SsoAdvanced SYBR Green Supermix 

and CFX96 thermal cycler (Bio-Rad, Hercules, CA, United States). Threshold Cycle (Ct) 

values for the selected genes were normalized against respective samples internal control 

(18S). Each reaction was carried out in triplicates for each gene and for each sample. The 

relative fold change was calculated by the 2-ΔΔCt method. The sequences for the primers 

used for Real-time PCR are provided below in Table 1 
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TABLE 3.1.  Rat primer sequences. 

Rat_IL-1β Sense: CCTCGGCCAAGACAGGTCGC  
Antisense: TGCCCATCAGAGGCAAGGAGGA 

Rat_NLRP-3 Sense: TGCATGCCGTATCTGGTTGT 
Antisense: ATGTCCTGAGCCATGGAAGC 

Rat_TNF-α Sense: CAACGCCCTCCTGGCCAACG  
Antisense: TCGGGGCAGCCTTGTCCCTT 

Rat_ASCII Sense: GGACAGTACCAGGCAGTTCG 
Antisense: GTCACCAAGTAGGGCTGTGT 

Rat_Caspase 1 Sense: GACAGGTCCTGAGGCCAAAG  
Antisense: AAAAGTTCATCCAGCAATCCATTT 

Rat_MCP 1 Sense: TAGCATCCACGTGCTGTCTC  
Antisense: CAGCCGACTCATTGGGATC 

Rat_18S Sense: GGATCCATTGGAGGGCAAGT  
Antisense: ACGAGCTTTTTAACTGCAGCAA 

Rat_NOS2 Sense: AGCAGAGTTGGTGCAGAAGC  
Antisense: GGGAATAGCACCTGGGTTTT 

Rat_Claudin1 Sense: AGGTCTGGCGACATTAGTGG  
Antisense: CGTGGTGTTGGGTAAGAGGT 

Rat-ZO-1 Sense: GGAAATGTGTAAATCACCTGGAAGA 
 Antisense: CCAAAGAACAGAAGACCACCAAC 

mm_18S Sense: TTCGAACGAACGTCTGCCCTATCAA  
Antisense: ATGGTAGGCACGGCGATA 

mm_Claudin1 Sense: TTTCGCAAA GCACCGGGCATACA  
Antisense: GCCACTAATGTCGCCAGACCTGAAA 

mm_ZO-1 Sense: CCACCTCTGTCCAGCTCTTC 
 Antisense: CACCGGAGTGATGGTTTTCT 

mm_TLR2 Sense: ACCAAGATCCAGAAGAGCCA  
Antisense: CATCACCCGGTCAGAAAACAA 

mm-TLR4 Sense: GGAGTGCCCGCTTTCACCTC  
Antisense: ACCTTCCGGCTCTTGTGGAAGC 

mm-TLR5 Sense: TGTAAAGTACTGGTGCCCGTGTGT  
Antisense: ACTGCGCAAACATTCTGCTGGC 

mm-NOS-2 Sense: CGCTGGCTACCAGATGCCCG  
Antisense: GCCATAGCGGGCTTCCAGC 

The primer sequences are given as 5′-3′ orientation; Sense: Forward primer. Antisense: 

Reverse primer. 
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Endotoxin Level Detection by Litmus Amebocyte Lysate Assay 

Bacterial endotoxins (EU/mL) were detected in mouse stool samples for mice 

which were treated with vehicle control, gulf war chemicals, and mice co-exposed with 

gulf war chemicals and antibiotics using the Pierce LAL Chromogenic Endotoxin 

Quantification Kit according to the manufacturer’s instructions. Briefly, stool samples 

were obtained from mice and equal weights were homogenized in endotoxin free water. 

The supernatant was then collected, and heat inactivated at 70°C. This was then diluted 

1:300 and endotoxins quantified. 

Nitrite Estimation by Griess Assay 

Nitric oxide release was estimated from the cell culture fluids by measuring nitrite 

formation immediately after the experiment was terminated. Nitrite was measured using 

the Griess reagent system from Promega corporation (Madison, WI, United States) and 

experiments were performed according to manufacturer’s protocols. 

Tunel Assay 

DNA fragmentation was detected using the ApopTag® Fluorescein in situ detection 

kit from Millipore (Billerica, MA, United States) by following the manufacturer’s standard 

protocol. 

3.2.4. Statistical Analysis 

All in vivo experiments were repeated three times (N = 3) with at least 3 mice per 

group (n = 9; data from each group of three mice were pooled). All in vitro and laboratory 

analysis experiments were repeated at least three or four times. The statistical analysis was 
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carried out by analysis of variance (ANOVA) (see Supplementary Table S1 for F-statistics) 

and a Turkey’s HSD test to determine specific group differences. Further we performed an 

unpaired student t-test, using Graph pad prism software (GraphPad Software Inc., La Jolla, 

CA, United States). For all analyses ∗P < 0.05 was considered statistically significant and 

are marked as (∗). 

3.3 RESULTS 

 

3.3.1 Altered Microbiome Is Associated with Increase in PAMPs and DAMPs in Gulf 

War Chemical Exposed Mice 

 

Studies have shown an association between altered microbiome and increase in 

endotoxin levels in serum or feces (18). In this study, using the LAL assay, we estimated 

the endotoxin levels (PAMPS e.g., LPS) in the stools of mice which were treated with 

GW chemicals in comparison with the controls and found that there was a significant 

increase in endotoxin levels of mice treated with GW chemicals compared to the controls 

(Figure 1A; P < 0.05). We further assessed the amount of HMGB-1 which was released 

in the small intestine (Figures 1B,C) using immunofluorescence microscopy and in the 

blood circulation (Figures 1D,E) using a western blot analysis for serum HMGB-1 levels 

in the circulation. These high amounts of DAMPS and PAMPS in the body will reach the 

EGC and cause persistent glial reactivity. 
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3.3.2. Altered Microbiome (Dysbiosis) Correlates with an increased expression of 

GFAP while gut decontamination with antibiotics decreases GFAP in Intestinal enteric 

glial cells 

 

Enteric glial cells which are found in close proximity with enteric neurons are very 

abundant in the lamina propria, mucosa and sub mucosal regions of the small intestine (83). 

Using immunofluorescence microscopy, we found that there was a significant increase 

(P < 0.05) in GFAP expression in the small intestine of mice treated with GW chemicals 

(PB + BER) compared to the control group, and mice co-exposed to GW chemicals and 

antibiotics (Figures 2A,B). The increased expression of this protein has been associated 

with a reactive EGC phenotype in IBS and IBD (100); (87). 

3.3.3. Altered Microbiome Correlates with a Reactive EGC Phenotype Through 

Activation of Toll-Like Receptors While Gut Decontamination via Antibiotic Usage 

Reversed Activation 

 

Our previous studies showed that the altered microbiome was associated with an 

activation of Toll like receptors such as TLR4 and TLR5 in GW chemical treated mice 

(18). In this study we show that there was a significant increase mRNA (Figure 3A) and 

protein expression (Figures 3B,E) levels of TLR 2, 4, and 5 in mice which were exposed 

to gulf war chemicals (Permethrin and pyridostigmine bromide) compared to mice treated 

with only vehicle control and mice co exposed with GW chemicals and antibiotics (P < 

0.05). We further detected a significant increased expression of TLR4 on EGC 

(TLR4/GFAP colocalizations) in GW chemical treated (GW) mice compared to Vehicle 

(CONT) and mice co-exposed with GW chemicals and antibiotics (GW + AB) (P < 0.05) 

(Figures 3C,D) by immunofluorescence microscopy. 
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3.3.4 Altered Microbiome Associated Increased Expression of S100B in Reactive EGC 

Resulting in NOS-2 Expression While Antibiotic Usage for Depletion of Bacteria 

Reversed Such Activation 

 

Using immunofluorescence microscopy, we found that there was a significant 

increase in the expression of S100B in GW chemical treated mice compared to mice treated 

with vehicle control and mice which were co exposed with GW chemicals and antibiotics 

(P < 0.05) (Figures 4A,C). We also found that there was a significant increase in RAGE 

expression in GW chemical treated mice in EGC by co-staining RAGE and GFAP (P < 

0.05) compared to vehicle control treated mice. However, this increase was not significant 

for mice treated with both GW chemicals and antibiotics (Figures 4B,D). 

We then studied the interaction between RAGE and S100B using 

immunofluorescence microscopy assuming that a co-localization of these two proteins 

would suggest complex formation and aid interaction. We showed that there was 

significant increase (P < 0.05) in S100β/RAGE complex formation in GW chemical 

exposed mice (GW) and mice treated with vehicle control (CONT) or mice co-exposed 

with GW chemicals and antibiotics (GW + AB) (Figures 5A,B). In Figure 6A using 

RTqPCR we found that there was a significant increase in mRNA expression of inducible 

nitric oxide synthase in the small intestine of GW chemical treated mice and mice treated 

with vehicle control and mice co exposed with antibiotics and gulf war chemicals (n = 

9, p < 0.05). Further, we showed that there was a marked increase in inducible nitric oxide 

synthase (NOS-2) expression in the intestine tissues of mice treated with GW chemicals 

(GW) compared to mice treated with vehicle control (CONT) and mice co-exposed with 

GW chemicals and antibiotics (GW + AB), although this increase was not significant (P = 

0.075, and 0.11 respectively) (Figures 6B,C). 
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These results are evidence of activation of a TLR-S100β/RAGE-iNOS pathway in 

association to an altered microbiome in vivo as suggested by a decrease of activation 

following the use of antibiotics to ensure gut decontamination. 

3.3.5. Exposure to PAMPS (e.g., Lipopolysaccharides) and DAMPS (e.g., HMGB-1) 

Causes the Activation of TLR4-s100β/RAGE-NO Pathway in EGC 

EGC can respond to an over balance in gut microorganisms by detecting PAMPS 

on/from the pathogen these bacteria such as cell wall, nucleic acid, flagella etc and mount 

an effective immune response through toll like receptors or NOD-like receptors (88). 

Using immunofluorescence microscopy, we found that there was significant 

increase in TLR4 expression when we treated rat EGC with LPS or HMGB-1 (Figures 

7A,B, P < 0.05). We also found an increase in S100β/RAGE complex formation in LPS 

and HMGB1 treated cells compared to cells treated with vehicle control (P < 0.05) (Figures 

8A–C). However, the difference between expression of these receptors was not 

significantly different between the cells treated with HMGB1 alone compared to those 

treated with HMGB1 + LPS-RS to block the TLR4 receptor. This indicates that possibly, 

DAMPS like HMGB1 can trigger inflammatory pathways in EGCs via several other 

receptors apart from TLR4. 

We further evaluated the activation of inducible nitric oxide synthase and release 

of nitric oxide in the rat EGC treated with LPS or HMGB1 (Figures 9A–D). We used RT 

q PCR to evaluate the expression of nitric oxide synthase in rat EGC (Figure 9A). Our 

results showed a significant increase in the expression of iNOS in cells treated with LPS 

or HMGB1 compared to vehicle control (P < 0.01). We also found that there was a 
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significant increase in the protein expression of NOS-2 in LPS and HMGB-1 treated cells 

compared to cells treated with vehicle control only as evaluated by immunofluorescence 

microscopy (Figures 9B,C) (n = 3, P < 0.05). Finally, we investigated whether there was a 

release of nitric oxide by the cells (Figure 9D). We found that NO release was significantly 

increased LPS (2.6 fold) (∗P < 0.05), but only a marked increase in cells treated with 

HMGB1 (P = 0.07) compared to vehicle control treated cells. Together, these results 

indicate the activation of a TLR-S100B/RAGE pathway that subsequently led to the 

increased production of nitric oxide, especially in response to microbial PAMPS. 

 

3.3.6. Activation of NOX-2 and Increased peroxynitrite formation in Rat EGC 

 

Studies have showed that NADPH oxidases are activated in response to pathogenic 

stimuli in human EGC (101). We found that treatment of EGC with LPS or HMGB1 

significantly increased their expression of NOX-2 (Figures 11A–D) (P < 0.05). This 

activation was observed by immunofluorescence microscopy by detecting co-localization 

events (per 100 cells) between two key subunits of the NOX-2 enzyme complex. One in 

the lipid membrane GP91phox (labeled with green secondary antibody) and P47phox 

(labeled with red antibody). We found a significant increase in these co-localizations in 

LPS or HMGB1 treated cells compared to vehicle control treated cells (VEH) and cells 

treated with LPS/HMGB1 and Apocynin (LPS + APO) a NADPH inhibitor (Apocynin 

blocks the transport of p47 phox to the membrane) (∗P < 0.05). 

NOX-2 induced superoxide and nitric oxide react rapidly to form peroxynitrite, an 

indicator of redox related formation of tyrosyl radical and subsequent formation of tyrosine 

nitration We also observed that there was a significant increase in formation of 
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peroxynitrite (shown by increased 3- nitrotyrosine formation) in LPS or HMGB1 treated 

EGC compared to Vehicle control (VEH) treated and LPS or HMGB1 and apocynin (LPS 

+ APO) or (HMGB1 + APO) (Figures 12A–D) treated EGC (P < 0.05, n = 6). 

3.3.7. Oxidative Stress Triggers Activation of NLRP-3 Inflammasome Which Results in 

Increased Inflammation 

 

Reactive oxygen species (ROS) can trigger activation of inflammasomes resulting 

in caspase 1 mediated cleavage of Il-1β and IL-18 proinflamatory cytokines (102). Our 

results (Figures 13A,B) showed significant increase in mRNA expression of NLRP-3, 

Caspase-1, IL-1β and TNF-α in LPS treated EGC but not HMGB1 treated cells which only 

showed an increase in TNF-α expression compared to the vehicle control (P > 0.05). 

Treatment of EGC with LPS and apocynin (LPS + APO) and FBA (LPS + FBA) 

significantly decreased the observed mRNA expression (P < 0.05). 

We then investigated the protein expression of NLRP-3 and ASCII and adaptor 

protein of NLRP-3 in rat EGC using immunofluorescence microscopy. We found that cells 

treated with LPS but not HMGB1 treated cells showed a significant increase in NLRP-3 

and ASCII complex formation compared to Vehicle control treated cells (VEH) indicating 

activation of the NLRP-3 inflammasome, when EGC encounter PAMPS. We further found 

that treatment of cells with LPS and FBA (LPS + FBA) showed a significant decrease in 

NLRP-3 protein activation (P < 0.05), (Figures 13C–E) suggesting the role of NOX-2 

derived peroxynitrite as a candidate for the inflammasome formation. 
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3.3.7. Increased DNA Fragmentation in Reactive Rat EGC Following Stimulation 

With LPS and Its Dependence on NOX-2-Induced Oxidative Stress 

 

Increased pathogenic stimuli were found to initiate apoptosis in EGC (101). We 

also investigated the fate of these reactive EGCs when continually exposed to PAMPs or 

DAMPs though a tunel assay to detect fragmented DNA. 

We found that LPS or HMGB1 treated cells showed a significant increase in co-

localization events per 100 cells compared to cells treated with only vehicle control (P = 

0.043) (Figures 14A–D). There was a significant decrease in tunel events when cells were 

treated with LPS and Apocynin but not FBA. And when cells were treated with HMGB1 

and apocynin or FBA, there where was no significant decrease in tunel events. 

 

3.3.8. Reactive EGC Contribute to Inflammation and Intestinal Barrier Integrity in Small 

Intestine: Gut Decontamination by Antibiotics and Blocking EGC Immune Activation Restores 

Gut Barrier Protein Levels in GWI Mice 

 

Cytokines, ROS and growth factors etc affect tight junction proteins, water 

channels and processes such as differentiation, apoptosis etc. (86). In this study, we showed 

that when LPS primed intestinal epithelial cells were treated with culture fluid from EGC, 

there was a significant increase in mRNA expression of proinflammatory cytokines in IEC-

6 cells (Figure 14E) (P < 0.05). LPS primed IEC-6 cells which were treated with culture 

fluids from EGC treated with LPS (LPS-SN) showed a significant increase in mRNA 

expression of IL-1β, MCP1 and TNF-α when compared to the vehicle control (VEH) (P < 

0.05). LPS primed cells treated with culture fluids from Vehicle control treated EGC 

showed a significant decrease in MCP-1 expression (P < 0.05) and a marked decrease in 
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TNF-α but no significant decrease in IL-1β expression compared to the LPS primed IEC-

6 cells treated with culture fluids from LPS treated EGC. 

To ensure that EGC immune activation via an altered microbiome plays a 

significant role in gut barrier protein expression in the intestine, we studied the GW 

chemical treated mice for their protein levels of aquaporin, a selective water channel, 

occludin and claudin-2. Results showed that administration of antibiotics was associated 

with significantly restored the levels of aquaporin 3 in the intestine of GWI-treated mice 

when compared to GW-treatment (Figures 15A–C). Levels of occludin were also restored 

when compared to controls but were significantly elevated when compared to GW-mice 

only (Figures 15D–F). Claudin-2 levels have been found to be increased in association with 

gut integrity loss. Our results showed that use of antibiotics significantly decreased the 

levels of claudin-2 in antibiotic treated mice when compared to GWI-mice alone (Figures 

15G–I). 

To show that EGC immune activation as a result of TLR4 and specific 

inflammation was responsible in part in causing differential expression of tight junction 

proteins that may play a significant role in gut barrier protein integrity loss, we chose to 

use two significant compounds that has been studied for their TLR-antagonism (SSnB) and 

anti-inflammatory properties (Sodium Butyrate-BT) specifically in the intestine. Results 

showed that a combined use of TLR4 antagonist and butyrate markedly increased 

aquaporin levels (Figure 15A) in the small intestine when compared to GW-mice while 

levels of Claudin-2 were significantly decreased in the small intestine following SSnB + 

BT administration when compared to the same group (Figure 15D). Occludin which is 

decreased in GW mice and plays a significant role in maintaining gut barrier integrity was 
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also restored to normal levels in the diseased mice following administration of SSnB + BT 

(Figure 15G). The results suggested that blocking TLR4 and subsequent immunoactivation 

that resulted in a reactive EGC phenotype in mice due to dysbiosis can be reversed by the 

use of these antagonists. Also, the results show that reactive EGCs might have a significant 

role in causing gut barrier dysfunction following activation via release of PAMPs and 

DAMPs and can be a cause of symptom persistence in GWI. 

3.3.9 Reactive EGC Modulate Tight Junction Proteins and Aquaporins in Intestinal 

Epithelial Cells 

 

We investigated the hypothesis that EGC which are exposed to DAMPS (e.g., 

HMGB-1) and PAMPS (e.g., LPS) modulate intestinal tight junction proteins and selective 

water channels by treating LPS primed IEC-6 cells with culture fluids freshly collected 

from EGC which have been treated with LPS (LPS-SN), HMGB1 (HMGB1-SN), vehicle 

(VEH-SN), LPS + SsnB + Butyrate (LPS + SsnB + BT) or HMGB1 + SsnB + Butryate 

(HMGB1 + SsnB + BT). Protein expression was studied by immunofluorescence 

microscopy observed at a total magnification of 400X; scale 10 μm. We found that 

expression of aquaporin-3 was significantly increased when IEC-6 cells were treated with 

LPS-SN, while when they were treated withHMGB1-SN the expression was significantly 

decreased compared to IEC 6 cells only treated with vehicle control (VEH) (n = 3, p < 

0.05). IEC-6 cells treated which were treated with culture fluids from vehicle control 

treated EGC (VEH-SN) showed only a slight increase in aquaporin-3 protein expression, 

while IEC-6 cells treated with inhibitors SsnB and Butyrate together with LPS or HMGB1 

restored expression of aquaporin 3 almost back to similar levels as IEC-6 cells treated with 

vehicle control (VEH) (Figures 16A,B). Claudin 2 expression increased significantly when 
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IEC-6 cells were treated with culture fluids from EGC treated with LPS-SN (n = 3; p < 

0.05), but only markedly, when with HMGB1 treated culture fluids (HMGB1-SN). And 

when IEC-6 cells were treated with culture fluids for EGC treated with SsnB and butyrate 

together with HMGB1 or LPS, claudin 2 levels were decreased similar to vehicle control 

treated cells (VEH) (Figures 16C,D). Higher magnification (630X and scale bar 20 μm) 

images taken under confocal microscopy are included to show the localization of this 

protein in the membrane (Figure 17A). IEC-6 cells that were treated with culture fluids 

from EGC treated with LPS (LPS-SN) or HMGB1(HMGB1-SN) showed a significant 

decrease in occludin protein expression compared to vehicle control treated IEC-6 cells 

(VEH) (Figures 16E,F). Treatment with culture fluids from EGC which had been treated 

with LPS or HMGB1 together with inhibitors (SsnB and butyrate) showed a restoration in 

occludin levels compared to the control (VEH), although the effect was stronger in IEC 6 

cells treated with LPS + SsnB + BT compared to HMGB1 + SsnB + BT treated EGC 

culture fluids. Higher magnification (630X and scale;20 μm) images taken under confocal 

microscopy were used to show the localization of this protein in the membrane (Figures 

17A,B). The tubulin staining used in occludin images to show the extent of occludin 

traversing the tubulin outline thus signifying their apical membrane localization as widely 

perceived (Shown by white arrows). 

These results indicate that reactive EGC are strong players in modulating tight 

junction protein expression through production of factors that may influence gut barrier 

integrity. 
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3.4 DISCUSSION 

 

Our results propose a possible molecular mechanism to explain the altered 

microbiome associated inflammation in a cellular level and poor gastrointestinal health 

which we observed in our studies on GWI (18,29). The results reported in this study are an 

advancement to our previous reported work in Gulf War illness pathology. Since gut 

sterility by antibiotics reversed immunopathology in GWI we used the same approach to 

correlate the observed gut dysbiosis with EGC immunoactivity. We found a novel role of 

altered microbiome in causing a reactive EGC phenotype characterized by activation of 

toll-like receptors, RAGE/S100B and increased expression of nitric oxide synthase. This 

pathway contributes to NADPH oxidase mediated generation of ROS which trigger 

inflammation. The mechanism of NOX2 mediated inflammation is well accepted as we 

and others have shown the role of peroxynitrite mediated inflammation in liver, kidney and 

gastrointestinal disturbances (29). Further, we propose that this increased inflammation and 

ROS may result in enteric gliopathy and a later episode of enteric neuropathy although this 

needs to be investigated further and is a speculation at this point. With continued 

production of proinflammatory cytokines and other destructive factors (e.g., ROS) by 

reactive EGC, the entire or part of the epithelial barrier in the gut might lose its integrity. 

This hypothesis is further strengthened by our results from the supposed blockage of TLR4 

and inflammation by using SSnB and Butyrate (thus blocking EGC immune activation), 

further exacerbating the observed gastrointestinal pathology in gulf war illness. This 

explanation not only helps us understand the acute phase of gulf war associated 

gastrointestinal inflammatory disorders, but also could explain why these symptoms may 
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persist for long since a vicious cycle might exist following a continuous assault on the 

intestinal epithelial cells. 

Enteric glial cells are important regulators of the gastrointestinal tract health. They 

can influence the gut microenvironment both positively or negatively depending on 

surrounding conditions (84,89). Remarkably they can respond to the presence of bacteria 

pathogens through this TLR-RAGE/S100β-iNOS pathway. This is through the recognition 

of bacterial parts such as cell wall, high bacterial populations, DNA etc via toll like 

receptors. With an altered microbiome, there is proliferation of certain bacterial species at 

the expense of others and this change upsets the natural healthy balance in microbiome. 

This disruption happens due to several stressful stimuli e.g., infection, diet or exposure to 

chemicals such as in the case of gulf war illness. 

Our previous studies have clearly shown that exposure to GW chemicals indeed 

results in altered microbiome (18,29). We found an increase in the 

Firmicutes/Bacteriodetes ratio with significant increases in several Firmicutes genera in 

gulf war chemical treated mice compared to the vehicle controls. Further we found an 

associated loss in bacteria populations such as Bacteroides, Oscillibacter and 

Ruminiclostridia. Increased abundance of Bacteroides for example are associated with 

healthy gastrointestinal states (103), while Oscillibacter and Ruminiclostridia have also 

been shown to be abundant in healthy controls in studies of Crohn’s disease. The decline 

in beneficial microbiota may have allowed for the proliferation of several bacteria 

populations at genus level, which usually exist in low percentages. There was a rise in 

several Coriobacteria, Bacilli and Verrucomicrobia bacteria. These have all been 

associated to increase in IBS and IBD (91). This upset balance of bacteria population 
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dynamic results in normally benign bacterial populations to become pathogenic and could 

cause EGC to change to a reactive phenotype through toll-like receptor signaling (104). 

Both the altered microbiome and reactive EGC phenotypes have been linked to 

several diseased states of the gut such as IBS, IBD, gut hypersensitivity etc. (92). However, 

there is scanty information concerning the true mechanism of how they contribute to these 

diseases. Our current study showed a correlation between altered microbiome and a 

reactive EGC phenotype in small intestine. Mice treated with GW chemicals (GW) had a 

higher expression of GFAP a protein whose increased expression has been associated with 

IBS, S100β/RAGE complex formation and finally an increase in nitric oxide synthase 

activity in EGC. These proteins were not increased in vehicle control treated mice (CONT) 

and their expression was significantly less in mice treated with GW chemicals and 

antibiotics (GW + AB). This emphasizes the role of microbiome in contributing to EGC 

reactive phenotype. Though we have used antibiotics to ensure gut contamination or 

sterility, the use of such approach may not be ensuring complete gut sterility in mice. Often 

the use of such antibiotics can selectively lead to bacteriostatic effects in healthy fauna 

while elevating the abundance of harmful bacteria in the gut. The use of germ free mice is 

the best approach for conducting studies where the endpoint is to assess the role gut bacteria 

in the pathology. Though it has to be admitted that antibiotic use for ensuring gut sterility 

is a standard approach where use of germ-free mice is a constraint. The use of antibiotics 

in our study is thus a limitation and needs further corroborative studies in future using the 

germ-free model. 

Mechanistically, we showed that the increased activation of NOX-2 following an 

altered microbiome and associated activation of the EGCs in GW chemical exposed mice 
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plays a significant role in contributing to the observed intestinal inflammatory phenotype. 

NOX-2 in EGC and in adjacent intestinal cells, participates in oxidative stress which results 

from the increase in nitric oxide production. We found that the generated ROS triggered 

activation of the NLRP-3 inflammasome which further caused increase in inflammation 

and programmed cell death as showed by increased DNA fragmentation (tunel assay) in 

rat EGCs stimulated with LPS and/or HMGB1. 

This increased inflammation and direct loss in enteric glia has been reported as in 

Chron’s disease (84,94). The reactive inflammatory glial phenotype is detrimental to the 

health of the gastrointestinal tract because it produces destructive factors which interact 

with surrounding cells in the intestine e.g., intestinal epithelial cells, enteric neurons etc. In 

our study we showed that when EGC conditioned media was applied to primed epithelial 

cells, there was an increase in proinflammatory cytokine expression such as IL1β, MCP-1 

and TNF-α which can be conducive to a leaky gut microenvironment. Furthermore, we 

observed that a reactive EGC phenotype can also have detrimental effects on the EGCs as 

shown by increased DNA fragmentation and cell death through the increased inflammation 

and ROS generated. This ultimately may result in programmed cell death in glia by 

pyroptosis or apoptosis as shown elsewhere (101). The general loss in enteric glia could 

lead to suboptimal functioning of enteric neurons and even enteric neuropathy (105). This 

mechanism could be a possible explanation for the symptoms of GWI which continue to 

persist for 25 years though the present report does not study the role of an activated EGC 

on intestinal neurons. However, the effect of the reactive EGCs on intestinal epithelial cell 

barrier integrity can be profound as a blockade of the EGC activation mechanisms by SSnB 

and butyrate prevented protein alterations in the tight junctions. The results are also 
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interesting since we observe a cyclical pattern of epithelial cell damage-activation of EGCs 

and a link to altered expression of tight junction proteins such as claudin-1,2, occludin or 

ZO-1 that may contribute to gut-leakiness, that eventually might fuel a continuous 

persistence of inflammation in the local intestinal microenvironment. 

3.5. CONCLUSION 

 

We report that EGC are important players in GWI gastrointestinal disease 

pathology and respond to the altered microbiome in the host gut by converting to a reactive 

phenotype which greatly affects the healthy functioning of the gastrointestinal tract. This 

reactive phenotype significantly contributes to oxidative stress which further triggers 

inflammation, loss of gut barrier integrity and possibly death of enteric glia and enteric 

neurons, although further investigations need to be carried out to confirm these neuronal 

effects. Further, these findings provide insights into how a possible altered microbiome 

may be contributing to the observed GWI intestinal epithelial cell inflammatory phenotype 

by destabilizing the redox status of glial cells and adjacent epithelial cells via NOX-2 

mediated peroxynitrite generation, inflammasome activation and release of pro 

inflammatory cytokines. It has to be further realized that more concrete evidence will be 

needed that involves germ free mice to conclude with certainty that microbiome alterations 

definitely dictate the observed EGC effects and therefore remains a limitation in this study.  

Antibiotic use for gut sterility should be overcome with more stringent 

experimental designs such as germ-free mouse models and gnotobiotic mice. Nevertheless, 

the present evidence will therefore be valuable to consider EGC nitric oxide production, 
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formation of peroxynitrite, a redox signaling intermediate and inflammation pathways as 

therapeutic targets in gulf war illness. 
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 Figure 3.1. Altered microbiome associated increase PAMPS and DAMPS  

A and B. Stool endotoxin levels. Endotoxin levels in stool samples were determined by 
the LAL assay. Graph A show the levels of endotoxin in Endotoxin Units (Eu) in vehicle 
control (CONT, n=9) treated mice, gulf war chemical exposed mice (GW, n=9) and mice 
co-exposed with antibiotics (GW+AB, n=9) (*P<0.05). C. Expression of HMGB-1 in small 
intestine tissues. Expression of HMGB1 was assessed by immunofluorescence microscopy 
at (total Magnification 200X; scale bar 100 µm). Images show immunoreactivity in the 
distal part of the small intestine for vehicle control treated mice (CONT, n=9), GW 
chemical treated mice (GW, n=9) and mice co-exposed with gulf war chemicals and 
antibiotics (GW, n=9). C. Quantitative morphometric analysis of HMGB-1 
immunoreactivity represented as arbitrary light units in the region of interest (%ROI) 
*P<0.05. D. Serum High mobility group box 1 (HMGB1) levels. Serum HMGB-1 levels 
were estimated by western blot analysis for mice treated with control (CONT, n=3), Gulf 
war chemical exposed mice (GW, n=5) and mice co-exposed to antibiotics and GW 
chemicals (GW+AB, n=3). Ponceau red staining was used for normalization of protein. E. 
Quantitative morphometric analysis of western blot bands normalized against total 
Ponceau. The Y axis shows HMGB-1/Ponceau S ratio. (*P<0.05). 
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Figure 3.2. Altered microbiome induced change in EGC phenotype to a reactive 

phenotype.  

A. Expression GFAP. Expression of GFAP was assessed by immunofluorescence 
microscopy at (top panel magnification 200X; scale 100 µm and bottom panel 
magnification 600X; scale 20 µm). Images show immunoreactivity of the distal part of the 
small intestine for vehicle control treated (CONT, n=9), gulf war chemical treated mice 
(GW n=9), mice treated with only antibiotics (AB, n=4) and mice co-exposed with gulf 
war chemicals and antibiotics (GW+AB n=9). B. Quantitative morphometric analysis of 
GFAP immunoreactivity represented as arbitrary light units as observed in the region of 
interest (%ROI). (*P<0.05).  
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Figure 3.3. Expression of Toll-like receptors in small intestine and EGC 

A and B General mRNA and protein expression levels of toll-like receptors TLR2, TLR4 
and TLR5 in small intestine of mice treated with vehicle control (CONT, n=9), gulf war 
chemical treated mice (GW, n=9) and mice treated with antibiotics only (AB, n=4) and 
mice co-exposed with GW chemicals and antibiotics (GW+AB, n=9). mRNA expression 
was determined by RTqPCR, while protein expression was determined by western blot 
analysis. E. Quantitative morphometric analysis of western blot bands normalized against 
β-actin The Y axis shows protein/β-actin ratioResults are expressed as mean +/- SEM for 
n=9. (* P<0.05).  C. Tissue level expression of TLR4 in EGC in small intestine. Expression 
of TLR4 in EGC was observed by in dual labelling of TLR4 and EGC cells marker GFAP 
via immunofluorescent microscopy visualized at (top panel magnification 200X; scale 100 
µm and bottom panel magnification 600X; scale 20 µm). in small intestine tissues obtained 
from mice treated with vehicle control (CONT, n=9); mice treated with GW chemicals 
(GW n=9) mice, mice treated with antibiotics only (n=4) and co-exposed with GW 
chemicals and antibiotics (GW+AB, n=3). D Quantitative morphometric analysis of 
immunoreactivity of GFAP/TLR4 (yellow) is represented as colocalizations events per 
field from randomly chosen microscopic fields. (*P<0.05) 
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Figure 3.4. Expression of S100B and RAGE in the small intestine 

A . Expression levels of S100B in EGC. Protein expression levels of S100B in EGC was 
determined by co-staining S100B with GFAP and assessed by immunofluorescence 
microscopy at (top panel magnification 200X; scale 100 µm and bottom panel 
magnification 600X; scale 20 µm). Images show immunoreactivity in distal part of the 
small intestine for vehicle control treated mice (CONT, n=9), gulf war chemical treated 
mice (GW, n=9) and gulf war chemical treated mice, mice treated with antibiotics only 
(AB, n=4) and mice co-exposed with antibiotics (GW+AB, n=9). C. Quantitative 
morphometric analysis of immunoreactivity of GFAP/S100B (yellow) is represented as 
colocalizations events per field from randomly chosen microscopic fields (% ROI).  
*(P<0.05).  B. Expression of RAGE in EGC Protein expression levels of RAGE in EGC 
was determined by co-staining RAGE with GFAP and assessed by immunofluorescence 
microscopy at (top panel magnification 200X; scale 50 µm and bottom panel magnification 
600X; scale 20 µm). . Images show immunoreactivity in distal part of the small intestine 
for vehicle control treated mice (CONT, n=9), gulf war chemical treated mice (GW, n=9) 
mice treated with antibiotics only (AB, n=4) and gulf war chemical treated mice co-
exposed with antibiotics (GW+AB, n=3). D. Corresponding quantitative morphometric 
analysis of immunoreactivity of GFAP/RAGE (yellow) is represented as colocalizations 
events per field from randomly chosen microscopic fields (% ROI).  *(P<0.05) 
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Figure 3.5. Formation of S100B/RAGE complex in small intestine 

A. S100B(Green)/RAGE(Red) complex formation expression in EGC in small intestine 
tissues. Protein expression levels were assessed by immunofluorescence microscopy of 
tissues at (top panel magnification 200X; scale 50µm and bottom panel magnification 
600X; scale 20 µm).  Images show immunoreactivity the distal part of the small intestine 
for gulf war chemical treated mice (GW, n=9), vehicle control (CONT, n=9), mice treated 
with antibiotics only (n=4) and mice co-exposed GW chemicals and antibiotics (GW+AB, 
n=9). B. Quantitative morphometric analysis of immunoreactivity for S100B/RAGE is 
represented as colocalization events per field for randomly chosen fields (% ROI). 
(*P<0.05).   
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Figure 3.6. Activation of NOS-2 in small intestine. 

A. NOS-2 mRNA expression in the small intestine of intestine of mice treated with vehicle 
control (CONT, n=9), gulf war chemical treated mice (GW, n=9), mice treated with 
antibiotics only (AB, n=4) and mice co-exposed with GW chemicals and antibiotics 
(GW+AB, n=9. *P<0.05) was determined by RTqPCR. B. Protein expression levels of 
NOS- 2 in enteric glial cells was determined by immunofluorescence microscopy of tissues 
and imaged at (top panel magnification 200X; scale 50µm and bottom panel magnification 
600X; scale 20µm). C. Quantitative morphometric analysis of immunoreactivity for 
GFAP/NOS-2 represented as colocalization events per field for randomly chosen fields (% 
ROI) 
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Figure 3.7: Exposure to DAMPS and PAMPS cause activation of TLR4 in EGC 

A. TLR4 activation in rat Enteric Glial Cells (EGC) (n=6). Colocalization of TLR4 and 
Flotillin in EGC treated with either vehicle control (VEH) or LPS, LPS+LPS-RS, HMGB-
1 or HMGB1+LPS-RS determined by immunofluorescence microscopy at (magnification 
400X; scale 50µm).B. Quantitative morphometric analysis of TLR4/Flotillin 
colocalizations between red and green immunoreactivity were determined for every 100 
cells per field. Fields were chosen randomly, and colocalizations represented as 
immunoreactivity in the region of interest (%ROI). (*P<0.05) 
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Figure 3.8. EGC exposed to LPS or HMGB-1 change to a reactive phenotype 

A. S100B/RAGE complex formation in rat Enteric Glial Cells (EGC) (n=6). Colocalization 
of S100β and RAGE in EGC treated with either vehicle control (VEH) or LPS, LPS+LPS-
RS, HMGB1 or HMGB-1+HMGB-1+LPS-RS was determined by immunofluorescence 
microscopy at (total magnification 400X and scale 20 µm) B and C Quantitative 
morphometric analysis of S100B/RAGE complex formation. Colocalizations between red 
and green immunoreactivity were determined for every 100 cells per field for randomly 
chosen fields and represented as immunoreactivity in the region of interest (% ROI). 
(*P<0.05)  
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Figure 3.9. Activation of inducible nitric oxide synthase by LPS or HMGB-1 

A. mRNA expression of NOS-2 in EGC exposed to vehicle control (VEH), LPS, 
LPS+LPS-RS or HMGB-1 and HMGB-1+LPS-RS (n=6) expressed as x fold of the vehicle 
control. mRNA expression was determined by qRTPCR. B. NOS-2 protein expression in 
the cells was detected by staining with green fluorescent antibody and counterstained with 
DAPI (blue) and viewed at (total magnification 400µm and scale 20µm). Fluorescence 
expression of NOS-2 in rat EGC per 100 cells in different fields and represented as 
immunoreactivity in the region of interest (% ROI). D. Nitrite concentration in EGC (n=8). 
Nitric oxide production in EGC supernatants was estimated by griess assay from freshly 
harvested supernatants. Nitrite concentration is reported as X fold increase over the vehicle 
control (VEH) (*P<0.05) 
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Figure 3.10. NADPH oxidase 2 and peroxynitrite mediated oxidative stress in vivo. 

 A. NOX-2 activation in small intestine assessed by immunofluorescence microscopy 
(n=9) (at total magnification 200X and scale 50µm). Activation of NOX 2 was studied 
through observing colocalizations between GP91phox (labelled with green fluorescent 
antibody) and P47 phox (labelled with red fluorescent antibody) subunits of the NADPH 2 
oxidase complex resulting in a yellow region. Colocalizations were determined in small 
intestine tissues of CONT, GW, AB and GW+AB chemical exposed mice. B Graphical 
representation of morphometric analysis of colocalization events of GP91phox and 
P47phox in the region of interest. C  Immunoreactivity of 3-nitrotyrosine (3NT) in EGC 
assessed through observing colocalizations between GFAP (labelled with green fluorescent 
antibody) and 3NT phox (labelled with red fluorescent antibody) at top panel magnification 
200X, scale 50µm and bottom panel magnification 600X and scale 20µm) Colocalizations 
were determined in small intestine tissues of CONT, GW, AB and GW+AB chemical 
exposed mice. D. Graphical representation of morphometric analysis of colocalization 
events of GFAP (green) and 3NT (red).  



www.manaraa.com

 

81 

 

Figure 3.11. NADPH oxidase 2 activation in rat EGC  

A and B Activation of NOX-2 in rat EGC (n=6). Activation of NOX 2 was studied through 
observing colocalizations between GP91phox (labelled with green fluorescent antibody) 
and P47 phox (labelled with red fluorescent antibody) subunits of the NADPH 2 oxidase 
complex resulting in a yellow region. Colocalization (yellow) of GP91phox and P47phox 
was detected in vehicle VEH, LPS, LPS + apocynin (LPS+APO), HMGB-1, HMGB-
1+APO treated cells at total magnification 400X; scale 20µm).  C and D Morphometric 
analysis of GP91/p47phox colocalization events in rat EGC per 100 cells in different fields. 
(*P<0.05) 
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Figure 3.12. Peroxynitrite formation in EGC 

A and B Expression of 3NT in rat EGC (n=6). Immunoreactivity of 3NT was detected in 
vehicle (VEH), LPS, LPS+APO, HMGB-1 and HMGB-1+APO treated cells by staining 
with red fluorescent antibody and counterstained with DAPI (blue) viewed at total 
magnification 400X; scale 20 µm). C and D. Morphometric analysis of 3NT in rat EGC 
per 100 cells in different fields. (*P<0.05) 
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Figure 3.13. ROS mediated activation of NLRP-3 inflammasome and inflammation 

in EGC  

A and B. Quantitative real time PCR (qRT-PCR) analysis of inflammasome and 
inflammation (n=6). mRNA expression of NLRP-3, caspase-1, IL-1β and TNF-α in rat 
EGC which were treated with vehicle (VEH), LPS+ apocynin (LPS+APO), LPS+ 
phenylboronic acid (LPS+FBA), HMGB-1, HMGB-1+APO. mRNA expression is 
represented as a fold change of the vehicle control. Data points are represented as mean 
±SEM (n=3). (*P>0.05) C. NLRP-3/ASC2 protein expression in rat EGC assessed by 
immunofluorescence microscopy and viewed at total magnification 400X; scale 20µm). 
Colocalization events were determined for every 100 cells per field in cells treated with 
LPS, LPS+APO, LPS+FBA, HMGB-1, HMGB-1+APO, HMGB1+FBA. D and E. 
Quantitative morphometric analysis of fluorescence intensity of NLRP-3/ASC2. Fields for 
morphometric analysis were randomly selected from different fields per slide and 
represented as % region of interest (% ROI). (*P<0.05) 
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Figure 3.14. DNA fragmentation of rat EGC. 

 A and B Tunel assay showing DNA fragmentation (n=6). DNA fragmentation was 
determined by the Tunel assay in Vehicle (VEH), LPS, LPS+APO, LPS+FBA, HMGB-1, 
HMGB-1+APO, HMGB-1+FBA treated cells viewed at total magnification 400X; scale 
10µm. C and D. Quantitative morphometric analysis of fluorescence expression of Tunel 
positive cells represented as Tunel events per field. (*P<0.05). E. Effect of EGC culture 

fluids on LPS primed intestinal epithelial cells. mRNA expression of IL-1β, MCP-1 and 
TNF-α in IEC-6 cells which have been primed with LPS and treated with culture fluids 
from EGC treated with LPS and vehicle control (n=6) represented as x Fold of the vehicle 
control. 
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Figure 3.15. Expression of claudin 2, occludin and aquaporin 3 in mouse small 

intestine.  

A, C and F. Protein expression of occludin, claudin 2 and aquaporin 3 in mouse small 
intestine was determined by immunofluorescence microscopy and visualized at total 200X; 
scale 50µm in tissues obtained from mice treated with vehicle control (CONT, n=6); mice 
treated with GW chemicals (GW n=9) mice co-exposed with GW chemicals and antibiotics 
(GW+AB, n=9) and mice treated with GW chemicals, Sparstalonin B (SsnB) and Sodium 
butyrate (GW+SsnB+BT)(n=6) (A, D and G). Higher magnification images for GW 
chemical treated group (GW) focusing on the apical or apical-lateral membranes total 
magnification 600X; scale 20µm) (C, F, I). Quantitative morphometric analysis of 
immunoreactivity of occludin or aquaporin 3 is represented as % ROI. (*P<0.05). (B, E, 
H) 
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Figure 3. 16. Protein expression of aquaporin 3, claudin 2 and occludin in intestinal 

epithelial cells. 

A, C and E: Protein expression of aquaporin-3, claudin-2 and occludin in IEC 6 cells treated 
with culture fluids from Vehicle (VEH-SN), LPS (LPS-SN), HMGB1 (HMGB1-SN) and 
inhibitors SsnB and butyrate (LPS+SsnB+BT and HMGB1+SsnB+BT) treated EGC. The 
expression of these proteins was studied by immunofluorescence microscopy and viewed 
at 400X total magnification; scale 10µm. Yellow arrows indicate the localization of the 
proteins in the cell membrane. B, D and F: Quantitative morphometric analysis of 
immunoreactivity of aquaporin, claudin 2 and Occludin represented as % ROI (n=3, 
*P<0.05). 
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CHAPTER 4 

 

HOST AKKERMENSIA MUCINIPHILA ABUNDANCE CORRELATES WITH 

GULF WAR ILLNESS SYMPTOM PERSISTENCE VIA NLRP3 MEDIATED 

NEUROINFLAMMATION AND DECREASED BRAIN DERIVED 

NEUROTROPHIC FACTOR3 
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ABSTRACT 

 

Neurological disorders are commonly reported among veterans who returned from 

the Gulf war. Veterans who suffer from GWI, complain of continued symptom persistence 

that include neurological disorders, muscle weakness, headaches and memory loss among 

many others that developed during or shortly after the war. Our recent research showed 

that chemical exposure associated microbial dysbiosis accompanied by a leaky gut 

connected the pathologies in the intestine, liver and brain. However, the mechanisms that 

caused the symptoms to persist even thirty years after the war remained elusive to 

investigators. In this study, we used a persistence rodent model of GWI to investigate the 

persistence of microbiome alterations, resultant chronic inflammation and its effect on 

neurotrophic and synaptic plasticity marker BDNF. The results showed that exposure to 

GW-chemicals (pesticides such as permethrin and prophylactic drugs e.g. pyridostigmine 

bromide) resulted in persistent pathology characterized by low relative abundance of the 

probiotic bacteria Akkermansia muciniphila in the gut, which correlated with high 

circulatory HMGB1 levels, blood brain barrier dysfunction, neuro-inflammation and 

lowered neurotrophin BDNF levels. Mechanistically, use of mice lacking the NLRP3 gene 

had significantly decreased inflammation and a subsequent increase in BDNF in the frontal 

cortex. This suggests that a persistently low species abundance of Akkermensia muciniphila 

and associated chronic inflammation due to inflammasome activation might be playing a 

significant role in contributing to persistent neurological problems in GWI. A therapeutic 

approach with various small molecules that can target both the restoration of a healthy 

microbiome and decreasing inflammasome activation might have better outcomes in 

treating GWI symptom persistence. 



www.manaraa.com

 

92 

4.1. INTRODUCTION  

 

Neurological disorders are commonly reported among veterans who returned from 

the gulf war (GW) of 1990-1991 (3,106),(107). Afflicted veterans complain of problems 

including neuralgias, repeated seizures, migraine headaches, muscle weakness and 

coordination, memory problems etc  (107,108)(109). These issues occur in combination 

with other gulf war illness (GWI) symptoms and their pathology is not very well 

understood. Most veterans who suffer from GWI developed their symptoms during or 

shortly after the war and these symptoms persist thirty years later. Although the causes of 

these symptoms are difficult to pinpoint, epidemiological studies have established a 

compelling link between these symptoms in different GW veteran cohorts and 

environmental exposures which occurred during the war, or chemicals that were applied to 

the warriors before or shortly after the war (110–112). Such exposures include desert storm 

dust, depleted uranium, combustion byproducts from oil wells, possible chemical weapons, 

pesticides, vaccines and prophylactic medicines such as pyridostigmine bromide etc 

(113,114) (4).  

In recent years, research has focused on studying symptoms as well as elucidating 

mechanisms of these disorders, using human GW veteran cohorts as well as animal, and in 

vitro studies. For example, Van Riper et al, reported widespread disruption in white matter 

microstructure distribution across brain regions involved in processing and modulating 

chronic pain (13). James et al found that there was a significant positive correlation 

between C-reative protein (CRP), pain and neurocognitive mood in GW veterans. Another 

study by Abou-Donia et al reported elevated autoantibodies to neurons and other brain cells 

eg tau proteins, glial acidic fibilliary protein (GFAP) and myosin basic protein (MBP) 
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which indicate neuronal injury or gliosis in GW veterans (115). In other recent animal 

studies, Zakirova et al found cognitive deficits in mice several weeks after treatment with 

GW chemicals and these deficits were associated with increased astrogliosis and a 

reduction in synaptophysin in mouse hippocampi and cerebral cortex (44). Further Madhu 

et al., found that cognitive impairments which persisted 10 months post-exposure to GW 

chemicals were associated increased density of activated microglia and astrocytes in rats 

and inflammation with elevated levels of HMGB1 in cerebral cortex (116). These studies 

provide evidence that exposure to GW chemicals plays a significant role in persistence of 

neurological dysfunction. This may be generally through the disruption of neuronal 

networks, reactive glia which fuel inflammation or poor neuronal growth and 

neuroplasticity.  

Many neurological disorders such as Parkinson’s disease (PD), Alzheimer’s disease 

(AD), bipolar disorders, neuropathic pain etc (117)(118,119) (120,121) are associated with 

decreased levels of neurotrophins or impairments in their signaling pathways (122)(22). 

These disorders also commonly present with chronic neuroinflammation (123–125). Brain 

derived neurotropic factor (BDNF) is the most prevalent neurotrophins in the brain and has 

been very widely studied (122,126). It is produced by neurons and it plays important 

functions in neuroplasticity, growth and survival of neurons (127). To date, our previous 

research on GWI has largely focused on the possible role of an altered microbiome 

(bacteriome and virome) in contributing to a persistent inflammatory phenotype as 

observed in our studies (18,19,29,128).  

We proposed that exposure to GW chemicals alters the microbiome which then 

drives inflammation through production of immunostimulatory particles i.e. damage 
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associated molecular pattern (DAMPS) and pathogen associated molecular patterns 

(PAMPS), these continuously fuel inflammation observed in different organ systems. 

Although our results largely supported our speculations, we were still limited in knowing 

whether the observed changes and mechanisms in microbiome and associated chronic 

inflammation due to an altered microbiome indeed persisted. In this present study, we used 

a persistence rodent model of GWI in which mice were first exposed to GW chemicals for 

two weeks (war phase) and then left in their cages on a normal chow diet for 20 weeks 

(post war phase). We then investigated the persistence of microbiome alterations, chronic 

inflammation and its effect on neuronal health (BDNF levels). We further used a NLRP3 

KO mouse to study its potential role in contributing to observed neuroinflammation. 

4.2. MATERIALS AND METHODS  

 

Materials  

 

We purchased Pyridostigmine bromide (PB) and Permethrin from Sigma- Aldrich 

(St. Louis, MO). Anti- BDNF, anti-RAGE, anti-claudin 5, anti-HMGB1, anti-IL-1β, anti-

ASC-2 were purchased from Sigma-Aldrich while anti-NLRP3, anti-3-nitrotyrosine, anti-

TMEM 119 primary antibodies were purchased from Abcam (Cambridge, MA). Species 

specific biotinylated conjugated secondary antibodies and Streptavidin-HRP (Vectastain 

Elite ABC kit) was purchased from Vector Laboratories (Burlingame, CA). Fluorescence 

conjugated (Alexa fluor) secondary antibodies, ProLong Diamond antifade mounting 

media with DAPI and Pierce LAL chromogenic endotoxin quantitation kit was bought 

from Thermo Fisher Scientific (Waltham, MA). Unless otherwise specified, all other 

chemicals used were purchased from Sigma. Paraffin-embedding of tissue and sectioning 
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were done by AML laboratories (Baltimore, MD) and at the Instrument Resources Facility, 

University of South Carolina School of medicine (Columbia, SC). Microbiome analysis 

was done by Cosmos ID (Rockville, MD).  

4.2.1. Animal experiments 

 

  Adult (10 weeks old) wild type male (C57BL/6J mice) and NLRP3 deficient adult 

(10 weeks) male (B6N.129-Nlrp3tm3Hhf/J) mice were purchased from the Jackson 

Laboratories (Bar Harbor, ME). Mice experiments were implemented in accordance with 

NIH guidelines for humane care and use of laboratory animals and local IACUC standards. 

All procedures were approved by The University of South Carolina at Columbia, SC. Mice 

were housed individually and fed on a chow diet at 22–24°C with a 12-h light/ 12-h dark 

cycle. All mice were sacrificed after animal experiments had been completed. Right after 

anesthesia, blood from the mice was drawn using cardiac puncture, to preserve serum for 

further experimentation. Their brains were removed immediately, and frontal cortex 

dissected out and were fixed using Bouin's fixative solution. We also collected the fecal 

pellets and luminal contents for microbiome analysis. 

 Treatments and rodent model of Gulf war illness 

 Mice were exposed to GW chemicals (pyridostigmine bromide and permethrin) 

based on established rodent models of GWI with some modifications (44,63,129). The 

treated mice group (GWP) and NLRP3KO (GWP-NLR3KO) mice group were dosed 

triweekly for two weeks with PB (2mg/kg) and permethrin (200 mg/kg) by oral gavage, 

then mice were left in cages to feed on a normal chow diet for 20 weeks. The control group 



www.manaraa.com

 

96 

(CONT) of mice received vehicle (6% DMSO in PBS) by oral gavage as in other 

experiments above.  

Microbiome analysis 

Microbiome analysis was done by CosmosID (Rockville, MD, USA) from fecal 

pellets and luminal contents which were collected from the animals of each group after 

sacrifice. DNA isolation, sequencing and analysis of gut microbiome were performed 

according to vendor optimized protocol. Briefly, DNA was isolated from fecal samples 

using the ZymoBIOMICS Miniprep kit, following the manufacturer’s instructions. 16S 

sequencing was carried out on the V3-V4 (341 nt–805 nt) region of the 16S rRNA gene 

with a twostep PCR strategy. First, PCR was performed using 16S-optimized primer set to 

amplify the V3–V4 regions of 16S rDNA within the metagenomic DNA. Then the PCR 

products from the previous steps were mixed at equal proportions and used as templates in 

the second step to produce Illumina dual-index libraries for sequencing, with both adapters 

containing an 8-bp index allowing for multiplexing. The dual-indexed library amplification 

products are purified using Ampure beads (Beckman Coulter). Library quantification was 

performed using Qubit dsDNA HS assay (ThermoFisher) and qualified on a 2100 

Bioanalyzer instrument (Agilent) to show a distribution with a peak in the expected range. 

A final qPCR quantification was performed before loading onto a MiSeq (Illumina) 

sequencer for PE250 (v2 chemistry). The sequences for each sample were then run on the 

16S pipeline of the CosmosID GENIUS software, and results were analyzed.  
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4.2.2. LABORATORY METHODS  

 

Immunohistochemistry  

The fixed brain tissues were embedded in paraffin and sliced into 5 μM thick 

sections. These sections were deparaffinized following optimized standard protocols. 

Epitope retrieval solution and steamer (IHC-Word, Woodstock, MD) were used for epitope 

retrieval for deparaffinized sections. 3% H2O2 was used for the recommended time to 

block the endogenous peroxidase. After serum blocking, the primary antibodies were 

applied at recommended and optimized concentrations. Species- specific biotinylated 

conjugated secondary antibodies and streptavidin conjugated with HRP were used to 

implement antigen specific immunohistochemistry. 3,3'-Diaminobenzidine (DAB) (Sigma 

Aldrich, St Louis, MD) was used as a chromogenic substrate. Mayer's Hematoxylin 

solution (Sigma Aldrich) was used as a counter stain. Sections were washed between steps 

using phosphate buffered saline 1X. Finally, stained sections were mounted in Simpo-

mount (GBI laboratories, Mukilteo, WA). Tissue sections were observed using Olympus 

BX63 microscope (Olympus, America). Cellsens software from Olympus America (Center 

Valley, PA) was used for morphometric analysis of images. Immunofluorescence staining 

Paraffin embedded sections were deparaffinized using standard protocol. Epitope retrieval 

solution and steamer were used for epitope retrieval of sections. Primary antibodies were 

used at recommended dilutions. Species specific secondary antibodies conjugated with 

Alexa Fluor (633-red and 488-green) were used at advised dilution. In the end, the stained 

sections were mounted using prolong diamond antifade reagent with DAPI. Sections were 

observed under–Olympus florescence microscope BX63 using 20X, 40X, 60X objective 

lens.  
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Real time Quantitative PCR  

Total RNA was isolated from frontal cortex tissue homogenization in TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions and 

purified with the use of RNeasy mini kit columns (Qiagen, Valencia, CA, USA). cDNA 

was synthesized from purified RNA (1 µg) using iScript cDNA synthesis kit (Bio-rad, 

Hercules, CA, USA) following the manufacturer’s standard protocol. Real-time qPCR 

(qRTPCR) was performed with the gene-specific primers using Sso Advanced SYBR 

Green Supermix and CFX96 thermal cycler (Bio-rad, Hercules, CA, USA). Threshold 

cycle (Ct) values for the selected genes were normalized against respective samples 

internal control 18S. Each reaction was carried out in triplicates for each gene and for each 

sample. The relative fold-change was calculated by the 2−∆∆Ct method. The sequences for 

the primers used for real-time PCR are provided in table 1. 

 Table 4.1: Primer sequences  

mm Claudin 5  Sense: TTCGCCAACATTGTCGTCC  

Antisense: TCTTCTTGTCGTAGTCGCCG  

mm18S Sense: TTCGAACGAACGTCTGCCCTATCAA  

Antisense: ATGGTAGGCACGGCGATA  

 

Endotoxin level detection by Litmus Amebocyte Lysate assay 

 Serum bacterial endotoxin levels (EU/mL) were detected using the Pierce LAL 

Chromogenic Endotoxin Quantification Kit (Waltham, MA) according to the 



www.manaraa.com

 

99 

manufacturer’s instructions. Briefly, serum samples were obtained from mice and diluted 

1:80 with endotoxin free water. The endotoxins were then quantified.  

Western Blot analysis 

 30 mg of tissue from each brain tissue sample was immediately homogenized in 

300 μl of RIPA buffer with protease and phosphatase inhibitors cocktail (Pierce, Rockford, 

IL) using slow speed mechanical homogenizer. The homogenate was centrifuged, and the 

supernatant was collected and saved for experimental use. 30 μg of denatured protein from 

each sample was loaded per well of Novex 4–12% bis-tris gradient gel (Life technologies, 

Carlsbad, CA) and subjected for standard SDS-PAGE. Separated protein bands were 

transferred to nitrocellulose membrane using precut nitrocellulose/filter paper sandwiches 

(Bio-Rad, Hercules, CA) and Trans–Blot Turbo transfer system (Bio-Rad) using 30 

minutes transfer protocol. Further, blots were blocked with 3% bovine serum albumin 

solution prepared in Tris-buffered saline with 0.05% tween-20 (TBS-T). Primary 

antibodies were used at recommended dilutions in 1.5% blocking buffer and incubated 

overnight at 4°C. Species-specific anti-IgG secondary antibody conjugated with HRP were 

used at recommended dilutions in 1% blocking buffer and incubated for 2h at room 

temperature. Pierce ECL Western Blotting substrate (Thermo Fisher Scientific Inc., 

Rockford, IL) was used in dark to develop the blot. Finally, the blot was imaged using 

G:Box Chemi XX6 (Syngene imaging systems) and subjected to densitometry analysis 

using Image J software. 
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4.2.3. Statistical analysis  

 

We conducted calculations for each experimental condition prior to initiation of the 

study, using preliminary data to confirm that the sample size was enough to achieve a 

minimum statistical power of 0.80 at an alpha of 0.05. One-way analysis of variance 

(ANOVA) was used with post-hoc comparisons among different exposure conditions or 

treatments (e.g., least significant differences (LSD) and Bonferroni correction) to compare 

means among multiple groups. Student’s t-tests was used to compare means between two 

groups at the termination of treatment. Correlative associations were tested using Pearson’s 

Rank Product moment coefficient analysis using Graph pad prism software (GraphPad 

Software Inc., La Jolla, CA, United States) 

4.3. RESULTS 

 

4.3.1. Gulf war chemical exposure results in a decreased relative abundance of 

Akkermansia muciniphila which negatively correlates with increased circulatory 

HMGB1 levels. 

 

Our previous studies have strongly suggested that exposure to GW chemicals alters 

the microbiome and these alterations may contribute to persistence of GWI symptoms 

through release of DAMPs and PAMPs (18,29,128). In this study we analyzed the 

microbiome for alterations in specific bacterial species that have a pronounced role in 

inflammation persistence in chronic diseases of the gut, metabolic reprogramming and 

neuronal deficiencies. We analyzed 10 distinct bacterial species that had a fold change 

difference in abundance and has been found to contribute to inflammation and metabolic 

responses (Fig. 1A) We found that mice treated with GW chemicals (GWP) had 

significantly lower abundance of A. muciniphila (significant), Bacteroides 



www.manaraa.com

 

101 

Thetaiotomicron and Dorea Sp (not significant) when compared to mice treated with only 

vehicle control (Figure 1A) (*P<0.05; n=6). Notably, A. muciniphila has been associated 

with several health benefits (130,131) (38). Furthermore, we found that mice which were 

treated with GW chemicals (GWP) had significantly higher HMGB1 levels in their serum 

compared to mice treated with vehicle control only (CONT) *P<0.05, n=6 (Figure 1B and 

C). We then carried out statistical analyses to determine whether the increased levels of 

HMGB1 were related to the observed decreased relative abundance of A. muciniphila. In 

Figure 1D, we found that there was a negative correlation between A. muciniphila 

abundance and circulatory HMGB1 levels (Peason’s r = -0.50; R square COD=0.255). 

4.3.2. Exposure to GW chemicals is associated with blood brain barrier tight junction 

protein dysregulation and the changes persist 5 months after exposure 

 

The study by Abou-Donia et al suggests the presence of a leaky BBB among 

veterans who returned from the GW and this may be a portal for immunostimulatory 

particles such as DAMPS and PAMPS to continuously fuel neuroinflammation (115). We 

studied the mRNA and protein expression levels of claudin 5, the major tight junction 

protein in the complex that makes up the BBB. We found that GWP mice also exhibited 

significantly lower claudin 5 mRNA and protein levels compared to vehicle control treated 

mice (CONT) P<0.05, n=6 (Figure 2 A, B and C). Further, we studied the levels of claudin 

5 in the BBB by observing colocalizations between claudin 5 and CD31 a marker for 

endothelial cells that make up the lining of the blood vessels (Figure 2 D and E). We found 

that there was a significant decrease in the number of colocalizations (yellow spots) 

constituting claudin 5 and CD31 in GWP mice compared to controls (CONT). This result 

points to the fact that at least one major component of BBB integrity is repressed at the 
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protein level paving the way for possible dysfunctional BBB, and this may lead to the 

passage of DAMPS such as HMGB1 leaking into the brain and triggering several immune 

responses. 

4.3.3. GW chemical exposure is associated with persistent activation of microglia via 

the HMGB1-RAGE pathway resulting in increased reactive oxygen species and 

triggering of the NLRP3 inflammasome. 

 

Chronic neurological disorders such as AD and PD etc, are characterized by 

activation of immune cells such as microglia, the resident macrophages of the brain (132). 

These cells may be activated by the presence of pathogens or DAMPS such as HMGB1. 

We studied the protein expression levels of activated microglia marker TMEM119. The 

results showed that there was a significant increase in activated microglia in the frontal 

cortex of mice treated with GW chemicals (GWP) compared to controls (CONT) (Figure 

3 A and B) even after 5 months of exposure. Further, we found that there was evidence of 

activated HMGB1-RAGE signaling as indicated by colocalization events. Figure 3 C, D 

shows a high expression of RAGE protein levels and subsequent increased RAGEHMGB1 

colocalizations in GWP mice compared to controls (Figure 3 E, F). RAGE is a receptor, 

which binds several ligands including HMGB1. Interaction of HMGB1-RAGE can lead to 

increased reactive oxygen species (ROS) generation eg peroxynitrite which reacts with 

tyrosine in proteins to form the stable adduct 3 nitrotyrosine. In Figure 4A, we detected 

significantly higher levels 3-nitrotyrosine (3NT) in GW chemical treated mice (GWP) 

compared to vehicle control treated mice (CONT) Figure 4B and C; (*P<0.05; n=6). We 

also found that mice exposed to GW chemicals had significantly higher inflammasome 

activation compared to vehicle control treated mice (CONT) Figure 4D and E; (*P<0.05; 

n=6). This activation was detected as yellow dots indicating a colocalization between the 
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NLRP3 protein complex (labelled with red antibody) and the adapter protein ASC2 

(marked with green), which facilitate processing of proinflammatory cytokines from their 

basal inactive to more active form via protein cleavage. 

4.3.4. Exposure to GW chemicals is associated with a persistent increased 

neuroinflammation and low levels of BDNF 

 

Inflammasomes are large immune complexes found in several cell types and are 

responsible for processing the inflammatory cytokines IL-1β and IL-18 by cleaving them 

from their precursors (133). Uncontrolled activation of these complexes can lead to chronic 

inflammation as has been found in cancer, diabetes and neurodegenerative disease 

(51,134,135). In our study, we found that NLRP3 inflammasome activation were also 

significantly associated with increased IL-1β protein levels in GWP mouse frontal cortex 

when compared to mice treated with only vehicle control (CONT) (Figure 5A, B); *P<0.05; 

n=6.  Neurodegerative diseases are often characterized by neuroinflammation accompanied 

by decreased levels of neurotrophins (119)(136). Similarly, in this study we observed that 

mice which were treated with GW chemicals had significantly lower levels of the 

neurotrophin BDNF when compared to mice treated with only vehicle control (CONT) 

(Figure 5-F) *P<0.05; n=6. 

4.4.5. Akkermensia muciniphila relative abundance correlates with BDNF levels and 

persistent neuroinflammation 

 

High abundance of A. muciniphila has been linked to decreased inflammation in 

chronic diseases (137–139). To study whether the host bacteria’s abundance played a role 

in affecting chronic inflammation and sustained BDNF levels in our model of GWI, we 
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carried out correlative analyses to determine whether there were statistically significant 

relationships between the bacterial abundance, inflammation and BDNF levels. The results 

showed that there was a significant positive correlation between BDNF levels and 

abundance of A. muciniphila (Pearson’s r=0.83, R square (COD)=0.73; p=0.0024), and a 

significant negative correlation with IL-1β protein levels (Pearsons r=-0.684; R square 

(COD)=0.46; p=0.02) (Figure 6A and B). Shaded area represents 95% confidence bands. 

4.4.6. Deletion of NLRP3 is protective against persistent neuroinflammation and is 

associated with increase in BDNF levels 

 

To study the role of NLRP3 in driving inflammation and lowering BDNF levels, 

we treated mice lacking NLRP3 with GW chemicals and then subjected them to our 

experimental conditions for 20 weeks or 5 months. We then studied the protein levels of 

IL-1β and BDNF by western blot analysis and immunohistochemistry. Our results show 

that there were significantly lower levels of IL-1β (Figure 7A, B), and increased BDNF 

(Figure 7 CF) levels in the frontal cortex of NLRP3 KO mice treated with GW chemicals 

(GWPNLR3KO), when compared to wild type mice treated with GW chemicals (GWP) 

(*P<0.05; n=6). 

4.5. DISCUSSION 

 

In our previous studies, we reported that there was a general alteration in 

microbiome accompanied by endotoxemia, a leaky gut, and inflammation in different 

organs such as the small intestine, brain and liver (18,29,128). We found significant 

increases in phyla Firmicutes and Tenericutes over Bacteriodetes in GW chemical exposed 

mice when compared to controls (29). However, it was not clear whether these alterations 
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persisted over a longer period of lifespan or would eventually resolve over time through 

repopulation and reconstitution of the host microbiome. We also were eager to study the 

mechanisms that would connect the altered microbiome and the persistent inflammatory 

changes in the intestine and the neural immune network. In this study, mice were exposed 

to the GW chemicals and allowed to ad libitum diet and water for 5 months. This was to 

simulate the period of exposure (war phase) and the post war period in GW veterans. We 

found that exposure to GW-chemicals (pesticides such as permethrin and prophylactic 

drugs eg pyridostigmine bromide) resulted in persistent pathology characterized by low 

abundance of A. muciniphila, high circulatory HMGB1 levels, blood brain barrier 

dysfunction, neuroinflammation and lowered neurotrophin BDNF levels. 

We report that exposure to GW chemicals caused a decrease in A. muciniphila or 

resulted in conditions that favor other bacteria populations repopulate over A. muciniphila 

(Figure1A). A. muciniphila is a mucin degrading bacterium which exists as part of the 

normal human gut flora and is abundant in healthy individuals (16,139–141). In recent 

years the herein reported bacterium is emerging as an important probiotic which can be 

consumed to improve health (142). This bacterium was found to improve ulcerative colitis 

in mice (143)  and restored colonic mucus layer thickness with decreased inflammation in 

aging mice (144). In another study, the abundance of this bacterium inversely correlated 

with inflammation and altered lipid metabolism in obese mice (142). Although the 

mechanism by which A. muciniphila promotes these health benefits is not fully understood, 

studies report that the bacterium strengthens gut barrier integrity through its association 

with enterocytes and also produces high amounts of anti-inflammatory cytokine IL-8 

(139,145). It is possible that the low levels of this bacterium in the gut compromised gut 
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barrier integrity, a condition that we have observed in our previous acute models of GWI 

(146)(29). This condition of compromised gut barrier integrity has also been reported 

among veterans who suffer from gastrointestinal problems in GWI (55). And yet another 

study found that A. muciniphila treatment normalized diet-induced metabolic endotoxemia, 

adiposity, and the adipose tissue marker CD11c in obese mice  which otherwise had 

increased inflammatory indicators in the intestine and aided in the metabolic disease 

development (137).  

Similarly, our studies of GWI mouse models have consistently found that altered 

levels of tight junction proteins in the gut was associated with increase in endotoxins and 

DAMPs such as HMGB1 and inflammation that was related to an alteration of gut 

microbiome abundance (146)(18). Notably, mice in the present persistent model study that 

were exposed to similar chemicals showed a slight increase in serum endotoxin levels (low 

level endotoxemia consistent with an obesity phenotype) in GW chemical treated mice 

when compared to vehicle control treated mice (Figure S1). In addition, a significant 

increase in circulatory HMGB1 levels were observed in GW-chemical exposed mice which 

negatively correlated with A. muciniphila relative abundance (Figure 1B, C and D) 

suggesting that a sustained and consistent low inflammatory trigger was closely associated 

with a persistent change in the microbiome and decreased A muciniphilia abundance in 

these mice. Further, the persistence of systemic inflammatory indicators such as endotoxin 

levels and serum HMGB1 for such a long period that failed to ease even 5 months after 

exposure (equivalent to >20 human years) and its connection with an altered microbiome 

triggered our interest to study their effects on neuronal structures and their networks.  
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Interestingly, before we could study the neuroinflammatory indicators for 

persistence, we needed to assess the integrity of the blood brain barrier, a vital interface of 

neuronal physiology and pathology. Results showed that expression of Claudin 5, a key 

tight junction protein of the BBB in the brain was decreased in the frontal cortex of mice 

treated with GW chemicals compared to controls (Figure 2A-E). This protein, together with 

other tight junction proteins such as claudin 1, zona occludens, occludins etc make up tight  

junctions in the BBB. The BBB is a selective barrier found at the interface of blood vessels 

in the brain and brain tissue. It is made of a single cell layer of endothelial cells, astrocyte 

and pericytes. Its unique properties allow it to tightly regulate the movement of particles 

between the circulation and brain tissue (56) (57). Claudin 5 and other tight junction 

proteins are found between adjacent endothelial cells of blood vessels and help to anchor 

these cells to create a tightly regulated selective barrier which allows the passage of 

particles between the blood and the brain(147). Low levels of this protein have been found 

in neurodegenerative and neuronflammatory diseases such as AD, PD and schizophrenia 

(148,149). We found decreased mRNA and protein levels of this this protein in GWP mice 

compared to controls (Figure 1A-F). This provides strong evidence that at least one key 

component of the BBB is dysregulated and this possibly compromised the barrier’s 

integrity, likely caused by the serum mediators endotoxins and HMGB1 causing it to 

become leaky though we have no direct evidence of such an event in an in vitro 

experimental set up using BBB endothelial cells. We hypothesized that this leaky BBB 

allowed the passage of unwanted particles such as DAMPs and PAMPS, HMGB1 as one 

such example, which we found to be greatly increased in the serum. It is also worth noting 

that even though serum endotoxin levels are not significantly higher in GWP mice 



www.manaraa.com

 

108 

compared to controls, even low levels of endotoxins over a long time can be a toxic 

stimulus to the body and may contribute to observed pathology(150), (62). 

HMGB1 is a DAMP known to trigger proinflammatory pathways through toll like 

receptors (TLRs) eg TLR4 and through the receptor for advanced glycation end products 

(RAGE) (49,151). We found that there was increased activation of microglia in GWP mice 

compared to controls (Figure 3A and B) with an increased expression of RAGE receptors 

in the frontal cortex Figure 3 C,D. We also detected HMGB1/RAGE complex formation 

using immunofluorescence microscopy, which may indicate activation of RAGE signaling 

(Figure 3E and F). The activation of this pathway is known to result in transcription of 

proinflammatory cytokines and generation of reactive oxygen species (ROS) (152) such as 

nitric oxide. High levels of nitric oxide in the presence of superoxide could result in the 

formation of peroxynitrite a potent ROS which attacks tyrosine to form 3 nitrotyrosine 

denaturing them and rendering them dysfunctional. We found significantly higher levels 

of ROS in our GWP mice compared to controls (Figure 4A and B). High amounts of ROS 

are a known trigger of the NLRP3 inflammasome (102). Inflammasomes are large protein 

complexes which are assembled in response to infections etc and are involved in processing 

of proinflammatory cytokines such as IL-1β and IL-18. We found that mice treated with 

GW chemicals had higher expression of NLRP3/ASC2 complex formation compared to 

controls (Figure 4C and D). Although inflammasomes are triggered as a defense 

mechanism, chronic activation of these complexes has been implicated in conditions 

characterized by chronic low-grade inflammation such as diabetes, PD, ALS etc (153,154). 

This activation of the NLRP3 inflammasomes was followed by increased IL-1β levels in 

the brain (Figure 5A and B) which might contribute to the persistent neuroinflammation in 
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GWI. In neurological diseases, inflammation has been associated with poor neuronal 

health, with fewer neurons, decreased neuronal plasticity and growth (155). This in part is 

due to decreased levels of neurotrophins such as BDNF. BDNF is a neurotrophin produced 

by neurons and is involved in neuronal growth, survival and plasticity (122). Studies by 

Guan and Fang, and another by Lapchak suggests that increased IL-1β levels interfered 

with  BDNF synthesis (156), while Tong et al., showed that increased IL-1β interfered with 

BDNF signaling through the PI3K/AKT pathway by preventing its activation of AKT. The 

above mechanisms resulted in decreased growth and survival of neurons (157). In this 

study, we report low levels of BDNF in the frontal cortex of mice which were treated with 

GW chemicals compared to controls even 5 months post exposure (Figure 5C-F). We also 

studied any correlations that BDNF, IL-1β with A. muciniphila relative abundance may 

have to connect the intestinal, microbiome changes and neuronal levels of these mediators 

referenced above. In Figures 6A and B, we show that A. muciphila relative abundance 

correlated negatively with IL-1β levels and positively with BDNF levels. The above result 

indicates that A. muciniphila relative abundance might have played a role in modulating 

neuroinflammation and neurotrophin levels in GWI as has been the case in obesity and 

other diseases described previously (46). This could be through the bacterium’s production 

of anti-inflammatory compounds that counter inflammation or modulation of the intestinal 

barrier integrity, although more studies need to be done to determine the exact mechanism. 

Finally, to study the role of NLRP3 inflammasome in contributing to neuroinflammation 

that persist for a prolonged period of time and its association with increased abundance of 

A. muciniphila, we used a mouse model with the systemic knockout of NLRP3 gene (KO 

mouse). The results found that deletion of this gene was associated with increased BDNF 
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levels and protected the mice from neuroinflammation (Figure 7A-F). Deleting NLRP3 is 

protective through preventing inflammasome activation and subsequent processing of 

proinflammatory cytokines and distinctly proves that the persistent inflammation in GWI 

chemical exposed mice that had altered A. muciniphila abundance is due to NLRP3-

mediated inflammasome activation though there may be multiple molecular mediators for 

triggering such an activation. Our current study identifies some of these mediators such as 

gut derived endotoxins, HMGB1 or peroxynitrite to name a few but the molecular 

mechanism of such a trigger remains speculative at this time. 

In conclusion, we report that persistence of GWI symptoms is characterized by low 

relative abundance of A. muciniphila and chronic high circulatory HMGB1 levels which 

trigger NLRP3 mediated neuroinflammation and decreased levels of neurotrophins through 

RAGE signaling. These findings not only provide insight into the mechanism of persistent 

neurological disturbances in GWI but also provide possible therapeutic targets. Firstly, the 

microbiome can be targeted through replacement or enhancing of A. muciniphila gut 

bacterial populations and other significantly lowered probiotic bacteria, and secondly 

through therapies that target RAGE signaling or NLRP3 inflammasomes to relieve 

persistent inflammation and improve quality of life. 
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Figure 4.1. Exposure to GW chemicals results in decreased relative abundance of 

Akkermensia muciniphila and chronic high levels of circulatory HMGB1 

A. Percentage abundance of gut bacteria species. Percentage abundance of 10 most 
abundant species in the gut bacteriome are represented comparing GW chemical treated 
groups (GWP) to vehicle control treated group groups (CONT). Data is represented as the 
mean of 6 mice per group.  B. Relative abundance of A. muciniphila. Relative abundance 
was determined from duplicate fecal samples of six mice per group treated with GW 
chemicals (GWP) compared to mice treated with vehicle control only (CONT). Data is 
represented as Mean ±SEM. (*p<0.05; n=6).  C. Serum HMGB1 levels. Western blot of 
HMGB1 levels in serum for mice treated with GW chemicals (GWP) compared to mice 
treated with vehicle control (CONT) only. Data is represented as Mean ±SEM. D. 

Densitometry of HMGB1 immunoblots, normalized against ponceau red (*p<0.05; n=6). 
E. Relationship between A. muciniphila and circulatory HMGB1 levels. A correlative 
analysis was carried out to determine how A. muciniphila is related to serum HMGB1 
levels.  We found a negative correlation between A. muciniphila and serum HMGB1 levels 
(Peason’s r = -0.50; R square COD=0.255 shaded area represents 95% confidence bands). 
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Figure 4.2. Exposure to GW chemicals is associated with altered claudin 5 levels in 

the frontal cortex 

A. Claudin 5 mRNA levels in the frontal cortex: mRNA levels of claudin 5 as studied by 
RTqPCR show that mice exposed to GW chemicals (GWP) had significantly decreased 
claudin 5 mRNA levels compared to mice treated with vehicle control only (CONT). B. 
Claudin 5 levels in protein levels in frontal cortex. Western blot analysis of Claudin 5 
protein levels in CONT and GWP treated mice. C. Morphometry analysis of claudin 5 
immunoblots, normalized against β-actin (*p<0.05; n=6). Data is represented as Mean 
±SEM. D. Representative immunofluorescence micrographs of the blood brain barrier 
showing colocalization of tight junction protein Claudin 5 (labelled in red) and endothelial 
cell marker CD31 (labelled in green) as yellow spots around a BBB (Magnification 60X 
and scale bar 10µm). Inset (Magnification (40X and scale bar 20 µm) shows the whole 
micrograph field, from which the main image was obtained. E. Quantitative morphometry 
analysis of colocalizations for every 100 cells, represented as % ROI (*p<0.05; n=6). Data 
is represented as Mean ±SEM. 
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Figure 4.3. Activation of Macrophages and associated HMGB1/RAGE complex 

formation 

A. TMEM119 immunoreactivity in frontal cortex. Representative immunohistochemistry 
micrographs of TMEM 119 reactivity in control (CONT) and GW chemical treated (GWP) 
mice (Magnification 40X and scale bar 50µm). B. Morphometric analysis (represented as 
% ROI) obtained from 10-15 images from different microscopy fields from each mouse 
sample. Data is represented as Mean ±SEM. (*p<0.05; n=6). C.  Western blots of RAGE 
protein levels in the frontal cortex of GWP and CONT treated mice.  D. Morphometry 
analysis of all immunoblots normalized against β-actin (n=5). (*p<0.05; n=6) Data is 
represented as Mean ±SEM. E. RAGE/HMGB1 complex formation. Immunofluorescence 
micrographs showing activation of NLRP3 inflammasome protein. HMGB1 (red) and 
RAGE (green) in GWP and CONT mice. Colocalizations are shown as yellow dots and 
marked with arrows in the micrographs (Magnification 40X and scale bar 20µm). F. 
Morphometric analysis (represented as % ROI) obtained from 6-8 images from different 
microscopy fields from each mouse sample. Data is represented as Mean ±SEM. (*p<0.05; 
n=6). 
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Figure 4.4. Increased ROS is associated with NLRP3 inflammasome activation 

A. 3-nitrotyrosine immunoreactivity in frontal cortex. Representative 
immunohistochemistry micrographs of 3-nitrotyrosine reactivity in control (CONT) and 
GW chemical treated (GWP) mice (Magnification 40X and scale bar 50µm). B. 
Morphometric analysis (represented as % ROI) obtained from 10-15 images from different 
microscopy fields from each mouse sample. Data is represented as Mean ±SEM. (*p<0.05; 
n=6). C. Immunofluorescence micrographs showing activation of NLRP3 inflammasome 
protein. NLRP3 (red) and its ASC2 (green) in GWP and CONT mice. Colocalizations are 
shown as yellow dots and marked with arrows in the micrographs. Magnification 60X and 
scale bar 20µm. D. Morphometric analysis (represented as % ROI) obtained from 6-8 
images from different microscopy fields from each mouse sample. Data is represented as 
Mean ±SEM. (*p<0.05; n=6). 
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Figure 4.5. GW chemical exposure is associated with chronic neuroinflammation and 

decreased Brain derived neurotrophic factor (BDNF) levels in Frontal cortex.  

 A. Immunohistochemistry micrographs of frontal cortex tissues of GWP and CONT 
treated mice showing immunoreactivity of IL-1β (Magnification 20X and scale bar 50µm). 
B. Morphometric analysis (as % ROI) obtained from 10-15 images from different 
microscopic fields from each mouse sample. (*p<0.05; n=6). Data is represented as Mean 
±SEM. C. BDNF immunoreactivity. Representative immunohistochemistry micrographs 
showing BDNF in frontal cortex tissues of GWP and CONT treated mice (Magnification 
40X and scale bar 50µm). D. Morphometric analysis (represented as % ROI) obtained from 
10-15 images from different microscopy fields from each mouse sample. E. Western blots 
of BDNF protein levels in the frontal cortex of GWP and CONT treated mice.  F. 
Morphometry analysis of all immunoblots normalized against β-actin (n=5). (*p<0.05; 
n=6) Data is represented as Mean ±SEM. 
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Figure 4.6. Decreased relative abundance of Akkermansia muciniphila correlates with 

IL-1β and BDNF levels in the frontal cortex.  

A. Correlation between A. muciniphila and IL-1β levels in GW chemical (GWP) and 
vehicle control (CONT) treated mice We carried out a linear regression analysis to 
determine the relationship between IL-1β and A. muciniphila in GWP and CONT mice. 
There was a negative correlation between A. muciniphila and IL-1β in the FC (Pearson’s 
r=-0.68; R square (COD)=0.46 and p=0.02). B. Correlation between A. muciniphila and 
BDNF levels in GW chemical (GWP) and vehicle control (CONT) treated mice. We 
carried out a linear regression analysis to determine the relationship between BDNF and A. 

muciniphila in GWP and CONT mice. There was a positive correlation between A. 

muciniphila relative abundance and BDNF levels (Pearson’s r= 0.83, R square (COD)= 0.7 
and p=0.0024) 
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Figure 4.7. Deletion of NLRP3 is associated with decreased neuroinflammation and 

lower BDNF levels.  

IL-1β immunoreactivity in frontal cortex. Representative immunohistochemistry 
micrographs showing IL-1β in frontal cortex tissues of GW chemical treated (GWP), GW 
chemical treated NLRP3KO (GWP-NLR3KO) and vehicle control (CONT) treated mice 
(Magnification 40X and scale bar 50µm). B. Morphometric analysis (represented as % 
ROI) obtained from 10-15 images from different microscopy fields from each mouse 
sample. Data is represented as Mean ±SEM. (*p<0.05; n=6). C. BDNF immunoreactivity 
in frontal cortex. Representative immunohistochemistry micrographs showing BDNF 
immunoreactivity in frontal cortex tissues of GW chemical treated (GWP), GW chemical 
treated NLRP3KO (GWP-NLR3KO) and vehicle control (CONT) treated mice 
(Magnification 40X and scale bar 50µm). D. Morphometric analysis (represented as % 
ROI) obtained from 10-15 images from different microscopy fields from each mouse 
sample. Data is represented as Mean ±SEM. (*p<0.05; n=6). E. Western blots of BDNF 
protein levels in the frontal cortex of GWP and CONT treated mice. F. Morphometry 
analysis of all immunoblots normalized against β-actin. Data is represented as Mean 
±SEM. (*p<0.05; n=6). 
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Supplementary Figures 

 

Figure 4.8. Serum endotoxin levels in GW chemical treated mice (GWP) compared to 

the vehicle control (CONT) only treated mice.  

Data is represented as Mean ±SEM. (*p<0.05; n=6, ns=not significant) 
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CHAPTER 5 

 

CONCLUSION 

 

Veterans who suffer from GWI report that their symptoms begun during, or shortly 

after the war. Although it is difficult to trace back the exact causes, research agrees that 

environmental exposures did in fact contribute significantly to causing the condition. It is 

perplexing however that such a brief war (about 1 month of active combat) resulted in such 

far reaching persistent health consequences.  

This dissertation reports on three studies which look at at gulf war chemical 

exposure-induced gut microbiome alterations as a significant driver of GWI pathology. We 

further investigated possible microbiome targeted therapies to alleviate the symptoms of 

GWI.  

In these three studies, we hypothesized that exposure to GW-chemicals irreversibly 

altered the microbiome, an important “organ” in modulating health. These alterations in 

the microbiome resulted in an increase in immunostimulatory particles ie DAMPs and 

PAMPs and dysfunctional tight junctions in the gut. These particle cross into the blood 

circulation, affecting the enteric nervous system and distant organs such as the liver and 

the brain.  
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In the enteric nervous system, we found that enteric glial cells became reactive in 

response to an altered microbiome. These cells can detect an alteration in microbiome 

through toll like receptors such as TLR4. These reactive glia produced large amounts of 

reactive oxygen species and proinflammatory cytokines which modulate tight junction 

proteins and aquaporins in the gut. The second study found an association between GW 

chemical exposure and hepatic inflammation and lipid and glucose metabolic 

reprogramming but with no significant clinical pathology. The third study found that there 

were persistent alterations in microbiome at the species levels. Several important gut 

bacteria were altered in the GW chemical exposed mice. However, this study focused on 

Akkermasia muciniphila a known probiotic bacterium whose levels are usually high among 

healthy individuals. We found that there was a lowered relative abundance of A. 

muciniphila which correlated negatively with NLRP 3 mediated neuroinflammation and 

positively with neurotrophin BDNF levels in the brain.  

In these studies, we proposed the use of different kinds of therapies. 

1. The use of natural therapies such as SsnB, a TLR4 antagonist polyphenol isolated from 

a Chinese herb Scirpus yagara.  Since we found that TLR4 plays a significant role in 

triggering inflammation in GWI.  2. The use of probiotics eg butyrate which support gut 

bacteria. We found that these short chain fatty acids play an important role in protecting 

mice against GW chemical induced inflammation and metabolic reprogramming. 3. 

Replacement of gut bacteria through consumption of depleted probiotic bacteria such as A. 

muciniphila, which we found to correlated with neuroinflammation and loss of 

neurotrophins such as BDNF which are important in neurological health. 4. Finally, the use 

of innate immune system receptor antagonists such as TLR4, TLR5, NLRP3 and RAGE 
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can be explored further, since we found that these receptors played a role in promoting 

GWI pathology. However, this method needs to be applied cautiously since the innate 

immune system receptors are also critical to health, and long-term inhibition could worsen 

pathology. 

Although a lot of research still remains to be done, these three studies advance the 

knowledge on GWI pathology, and inform us on how to consider similar conditions, where 

the use of chemical combinations together with stress and other under lying conditions 

could result in unexplainable syndromes such as GWI. 
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